

Ai Chatbots & Agents
A smarter way to
learn Dialogflow

P2P Clouds

1

DialogFlow Agents

❖ Chapter 1 : Getting Started……………………………………………………………………………………………………….3

➢ DialogFlow History…………………………………………………………………………………………………….….3

➢ DialogFlow Introduction……………………………………………………………………………………………….4

■ Capabilities of DialogFlow………………………………………………………………………………..4

➢ Difference between Dialogflow ES and CX…………………………………………………………………….4

■ Dialogflow ES (Essentials):..5

■ Dialogflow Cx (Customer Experience):..6

➢ Chatbot and Ai Agent:..7

■ How to start with DialogFlow tool…………………………………………………………………….7

➢ What are intents with example…………………………………………………………………………………….8

■ Example: Pizza Order Intent…………………………………………………………………………..…8

■ Steps to Create a Pizza Chatbot………………………………………………………………………..9

➢ Contexts……….13

■ Input Contexts…………………………………………………………………………………………………13

■ Output Contexts……………………………………………………………………………………………..13

❖ Chapter 2: Fulfillment and Webhooks with FastAPI andngrok………………………………………………….14

➢ What is Fulfillment in DialogflowES?...14

https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.2et92p0
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.tyjcwt
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.tyjcwt
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.17dp8vu
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.26in1rg
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.26in1rg
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.lnxbz9
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.35nkun2
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.1ksv4uv
https://docs.google.com/document/d/18QDpqZtvQh7INgJDfjL5vioi1OTyvtNlzAh4z2MLN00/edit#heading=h.44sinio

2

Chapter 1 : Getting Started

DialogFlow History: Dialogflow, originally known as API.AI, was founded in 2010 by Speaktoit.

It was initially developed to provide conversational interfaces for virtual assistants and chatbots.

Google acquired API.AI in 2016 and rebranded it as Dialogflow, integrating it with its cloud

ecosystem to enhance its natural language processing (NLP) capabilities

Since then, Dialogflow has evolved into a powerful platform for building AI-powered chatbots

and voice assistants across multiple channels. Over time, Google introduced new features,

including the transition from Dialogflow ES (Essentials) to Dialogflow CX (Customer Experience),

offering more advanced conversational flows and state management.

Reference: https://cloud.google.com/dialogflow/es/docs/history

https://cloud.google.com/dialogflow/es/docs/history

3

Dialogflow Introduction
Dialogflow is a cloud-based platform that enables developers to design and implement

conversational interfaces using natural language understanding (NLU) and machine learning

(ML). It helps businesses create AI-driven chatbots and virtual agents that can interact with

users via various communication channels, such as websites, mobile apps, messaging apps, and

voice-enabled devices. Dialogflow supports multiple languages, making it a global solution for

conversational AI.

Capabilities of Dialogflow

● Natural Language Understanding (NLU): Detects user intent and extracts relevant

entities from conversations.

● Omnichannel Integration: Deploy chatbots on platforms like Google Assistant,

Facebook Messenger, Slack, WhatsApp, and more.

● Context Management: Maintains conversation context to provide personalized

interactions.

● Fulfillment: Connects with backend systems via webhooks to fetch real-time data and

execute business logic.

● Multi-language Support: Offers support for multiple languages to cater to global

users.

● Rich Responses: Enables multimedia-rich interactions such as images, cards, and

quick replies.

● Analytics and Insights: Provides metrics and logs to track chatbot performance and

user engagement.

4

Difference between Dialogflow ES and CX

Dialogflow ES (Essentials):

1. Designed for simpler chatbot implementations.

2. Uses intents and contexts to manage conversations.

3. Best for small to medium-sized projects with linear workflows.

4. Limited state management capabilities.

5. Easier to set up and requires minimal training.

5

Dialogflow CX (Customer Experience):

https://dialogflow.cloud.google.com/cx/

● Provides advanced features with state machine-based flows.

● Designed for complex, large-scale conversational applications.

● Supports a visual flow builder for intuitive design.

● Allows for better scalability and more granular control over conversation paths.

● Ideal for enterprises needing sophisticated conversational flows.

https://dialogflow.cloud.google.com/cx/

6

Chatbots and Ai Agents

A chatbot is a software application that simulates human conversation through text or voice

interactions. It typically follows predefined scripts or simple decision trees to respond to user

inputs.

An AI agent, on the other hand, is a more advanced version of a chatbot that leverages

machine learning, natural language processing, and artificial intelligence to understand user

intent, maintain context, and provide more intelligent, context-aware responses.

How to Start with Dialogflow Tool

● Sign up for Google Cloud Platform (GCP):

○ Visit the Google Cloud Console and create an account.

● Enable Dialogflow API:

○ Navigate to the API & Services section and enable the Dialogflow API.

7

● Access Dialogflow Console:

○ Go to Dialogflow Console and create a new agent.

● Create an Agent:

○ Define a project, set the default language, and choose a time zone.

● Define Intents:

○ Create intents to handle different user queries.

● Train the Agent:

○ Add training phrases and responses to fine-tune the chatbot's understanding.

● Integrate with Platforms:

○ Use built-in integrations to deploy the agent on platforms like Google Assistant,

Facebook Messenger, and more.

● Testing and Optimization:

○ Use the Dialogflow simulator to test responses and refine the agent based on

user interactions.

What are Intents with Example

Intents in Dialogflow represent the mapping between what a user says and how the system

should respond. They are used to categorize user requests and provide appropriate responses.

Each intent contains training phrases, responses, and optional actions.

Example: Pizza Order Intent

Intent Name: OrderPizza

8

Training Phrases:

● I want to order a pizza

● Can I get a large pepperoni pizza?

● I’d like to order two medium-sized pizzas

Response:

● Sure! You choosen large one pepporoni pizza?

● Great choice! Would you like to add any drinks?

By setting up an intent like this, Dialogflow can handle different ways users request a pizza

order and respond accordingly.

9

★ Create Entities:

○ Go to the Dialogflow console and navigate to the "Entities" section.

○ Create an entity named pizza_name with values like "pepperoni," "margherita,"

"veggie," etc.

○ Create another entity named pizza_size with values like "small," "medium,"

"large."

10

★ Define an Order Pizza Intent:

○ Create an intent named OrderPizza.

○ Add training phrases such as:

11

■ "I want a medium pepperoni pizza."

■ "Can I get a large margherita?"

○ Use the pizza_name and pizza_size entities in the training phrases.

★ Create the order_pizza Entity:

○ Define a composite entity called order_pizza.

○ Include pizza_name and pizza_size as attributes.

12

★ Configure Fulfillment:

○ Enable webhook fulfillment to connect the chatbot with a backend system for

processing orders.

★ Test the Agent:

○ Use the simulator in Dialogflow to test user inputs and verify correct responses.

Contexts

Contexts are an essential feature in Dialogflow that help manage the flow of conversation by

maintaining relevant information across multiple interactions. They allow the chatbot to

understand and remember what the user has said earlier and use it to provide meaningful

responses.

There are two types of contexts in Dialogflow:

Input Contexts

Input contexts are used to control which intents should be triggered based on the current

conversation context. They help the agent identify relevant intents when multiple intents could

match a user's query.

Example: If a user says "I want to order a pizza," an input context named order-pizza can be

set. Subsequent intents, such as choosing a pizza type or size, will only be triggered if the input

context is active.

Output Contexts

Output contexts are used to maintain state and pass information from one intent to another.

They help in carrying forward user-provided data through the conversation.

Example: After the user specifies the pizza type, an output context can be set to retain that

information for the next intent, such as selecting the pizza size.

Adding Input and Output Contexts in Dialogflow

To add contexts in Dialogflow:

1. Go to the Dialogflow console and open the desired intent.

13

2. In the "Contexts" section, add an input context to restrict the intent to a specific

conversational state.

3. Add an output context to maintain state across interactions.

4. Test the agent to ensure the context is being set and carried correctly.

Using contexts effectively helps create smooth and personalized conversations that feel natural

and efficient to the user.

Chapter 2: Fulfillment and Webhooks with FastAPI

and ngrok

14

What is Fulfillment in Dialogflow ES?

Fulfillment is the mechanism that allows your Dialogflow agent to interact with external

services. It lets you perform dynamic actions such as querying a database, calling APIs, or

responding with personalized content.

Key Components of Fulfillment:

● Webhook: An HTTP endpoint that processes requests sent by Dialogflow.

● Request and Response Structure: JSON format for communication between

Dialogflow and your webhook.

● Enablement: Fulfillment must be enabled on the Dialogflow Console at the intent level.

Building a Webhook with FastAPI

FastAPI is a high-performance, easy-to-use Python framework ideal for building webhooks for

Dialogflow.

Fast API Doc: https://fastapi.tiangolo.com/

Uvicorn: https://www.uvicorn.org/

Step 1: Setting Up FastAPI

https://fastapi.tiangolo.com/
https://www.uvicorn.org/

15

Install FastAPI and Uvicorn:

pip install fastapi uvicorn

Create a Basic FastAPI Application:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
 return {"message": "Webhook is running!"}

Run the Application:

uvicorn main:app --reload

Step 2: Implementing Dialogflow Webhook Logic

1. Define the Webhook Endpoint:

Easy Starter Way

from fastapi import FastAPI, Request

app = FastAPI()

@app.post("/webhook")
async def webhook(request: Request):
 req_data = await request.json()

16

 print("Request received:", req_data)

 # Construct a response
 fulfillment_response = {
 "fulfillmentText": “This is a response from FastAPI”
 }
 return fulfillment_response

Normal Way

from fastapi import FastAPI, Request

app = FastAPI()

@app.post("/webhook")
async def webhook(request: Request):
 req_data = await request.json()
 print("Request received:", req_data)

 # Construct a response
 fulfillment_response = {
 "fulfillmentMessages": [
 {"text": {"text": ["This is a response from FastAPI!"]}}
]
 }
 return fulfillment_response

2. Test the Endpoint Locally: Use tools like Postman or curl to send a test

request and ensure the endpoint behaves as expected.

Exposing Localhost with ngrok

For Dialogflow to communicate with your webhook, it needs a publicly accessible URL.

Ngrok creates secure tunnels to your localhost, making it accessible over the internet.

Step 1: Install ngrok

1. Download and Install: Visit ngrok's website to download and install the tool

for your OS.

2. Authenticate:

3. ngrok authtoken YOUR_AUTH_TOKEN

https://ngrok.com/download

17

Step 2: Run ngrok

1. Expose Localhost:

2. ngrok http 8000

3. Copy the Public URL: Ngrok will display a URL like https://<random-

string>.ngrok.io. Use this in the Dialogflow Console.

Connecting the Webhook to Dialogflow

1. Enable Fulfillment:

o Go to the intent where you want to use fulfillment.

o Enable the "Use webhook" checkbox.

2. Set the Webhook URL:

o Navigate to the Dialogflow Console -> Fulfillment section.

o Add the ngrok public URL (https://<random-string>.ngrok.io/webhook).

3. Test Your Integration:

o Use the Dialogflow Simulator to trigger the intent and verify that your

webhook is responding correctly.

Advanced Use Cases with FastAPI Webhooks

1. Custom Payloads for Rich Responses:

18

rich_response = {
 "fulfillmentMessages": [
 {
 "payload": {
 "richContent": [
 [{
 "type": "info",
 "title": "Custom Card",
 "subtitle": "This is a subtitle",
 "image": {
 "src": {
 "rawUrl": "https://example.com/image.png"
 }
 }
 }]
]
 }
 }
]
}

2. Accessing User Parameters:

Extract and use parameters provided by the user:

user_params = req_data["queryResult"]["parameters"]
print("User Parameters:", user_params)

3. Error Handling:

Add robust error handling to ensure reliable responses:

try:
 # Processing logic here
 return fulfillment_response
except Exception as e:
 return {"fulfillmentText": "Something went wrong!"}

Chapter 3: Dialogflow CX Setup and Pizza Chatbot

19

Introduction to Dialogflow CX

Dialogflow CX (Customer Experience) is designed for complex, multi-turn

conversations with advanced state management. Unlike ES, CX uses a visual flow

builder to map conversational journeys, making it ideal for enterprise-grade chatbots.

Key components include:

● Agents: The core chatbot instance.

● Flows: Modular sections of a conversation (e.g., "Order Pizza" flow).

● Pages: Steps within a flow (e.g., "Choose Size," "Select Toppings").

● Transitions: Rules to navigate between pages.

● Parameters: Variables to store user inputs (e.g., pizza_size).

20

Setting Up a Dialogflow CX Agent

1. Create a CX Agent:

o Go to Dialogflow CX Console.

o Click Create Agent → Name it "PizzaBotCX" → Set language/time zone.

o Enable Advanced Settings for Google Cloud logging if needed.

2. Design the Flow:

o Click Build a Flow → Name it "OrderPizzaFlow".

o Start with the Default Start Page to handle initial user requests.

Building the Pizza Order Flow

https://dialogflow.cloud.google.com/cx/

21

Step 1: Define Intents and Entities

1. Create Intents:

o StartOrderIntent:

▪ Training Phrases: “I want to order a pizza,” “Start pizza order.”

o SizeSelectionIntent:

▪ Training Phrases: “Large,” “Medium size,” “I’ll take a small.”

o ToppingsIntent:

▪ Training Phrases: “Add pepperoni,” “Mushrooms and olives.”

2. Create Entities:

o pizza_size: Values: small, medium, large.

o toppings: Values: pepperoni, mushrooms, olives.

22

Step 2: Configure Pages and Transitions

1. Start Page:

o Entry Route: Triggered by StartOrderIntent.

▪ Set Parameter: pizza_type (if needed).

o Transition: Route to SizePage.

2. SizePage:

o Parameter: pizza_size (required).

o Entry Route: Use SizeSelectionIntent to capture size.

o Condition: $session.params.pizza_size != null.

o Transition: Route to ToppingsPage.

3. ToppingsPage:

o Parameter: toppings (list).

o Entry Route: Use ToppingsIntent.

o Transition: Route to ConfirmationPage.

23

Step 3: Add Conditional Responses

In ConfirmationPage, use a conditional response:

Fulfillment in CX with FastAPI

Dialogflow CX uses a different JSON structure for webhook requests compared to

ES. Adapt the FastAPI webhook from Chapter 2:

Sample CX Webhook Request:

{
 "session":
"projects/PROJECT_ID/locations/LOCATION/agents/AGENT_ID/sessions/SES
SION_ID",
 "pageInfo": {
 "currentPage":
"projects/PROJECT_ID/locations/LOCATION/agents/AGENT_ID/flows/FLOW_
ID/pages/PAGE_ID"
 },
 "sessionInfo": {
 "parameters": {
 "pizza_size": "large",
 "toppings": ["pepperoni"]
 }
 }
}

FastAPI Endpoint:

from fastapi import FastAPI, Request

app = FastAPI()

@app.post("/cx-webhook")
async def cx_webhook(request: Request):
 data = await request.json()
 params = data.get("sessionInfo", {}).get("parameters", {})

 size = params.get("pizza_size", "medium")
 toppings = params.get("toppings", [])

 response_text = f"Order confirmed: {size} pizza with {toppings if toppings
else 'no toppings'}."

 return {
 "sessionInfo": {
 "parameters": params # Preserve parameters for future steps
 "fulfillmentResponse": {

24

 "messages": [{"text": {"text": [response_text]}}]

 }

 }

Configure Fulfillment in CX:

1. In the ConfirmationPage, enable Webhook under Entry Fulfillment.

2. Set the endpoint to your ngrok URL (e.g., https://abcd1234.ngrok.io/cx-

webhook).

Testing the Flow

1. Use the CX Simulator to test:

o User: “I want to order a pizza.”

o Bot: “What size would you like?”

o User: “Large with pepperoni.”

o Bot: “Order confirmed: large pizza with pepperoni.”

Advanced CX Features

1. Slot Filling:

o Mark parameters as required in a page. The bot will auto-prompt users

for missing data.

2. Event Handlers:

o Trigger intents on specific events (e.g., timeout, retry).

3. Parameter Persistence:

o Use $session.params.param_name to retain data across flows.

Migrating from ES to CX

● Flows ≈ Contexts: CX flows replace ES’s input/output contexts with visual

workflows.

● Parameters ≈ Entities: Store user inputs in parameters instead of composite

entities.

25

● State Management: CX automatically preserves session parameters, reducing

manual context handling.

Conclusion

Dialogflow CX empowers developers to build non-linear, scalable chatbots with

intuitive visual tools. By structuring conversations into flows and pages, you can handle

complex scenarios like pizza orders effortlessly.

Chapter 4: Building a Weather Chatbot and FastAPI

Introduction to the Weather Chatbot

In this chapter, you’ll build a weather chatbot using Dialogflow CX and FastAPI.

The chatbot will:

1. Capture a city name and country name from the user.

2. Call an external weather API (e.g., WeatherAPI) to fetch real-time weather data.

3. Return a formatted response with temperature, humidity, wind speed, and more.

Step 1: Set Up the Dialogflow CX Agent

1. Create a New Agent:

o Go to Dialogflow CX Console.

o Name the agent WeatherBotCX and set the default language.

2. Define Entities:

o city: System entity type @sys.geo-city (prebuilt).

o country: System entity type @sys.geo-country (prebuilt).

Step 2: Create the Weather Intent

1. Intent Name: GetWeather

2. Training Phrases:

o “What’s the weather in Lahore, Pakistan?”

o “Tell me the weather forecast for Tokyo, Japan.”

o “How’s the weather in Paris?”

https://www.weatherapi.com/
https://dialogflow.cloud.google.com/cx/

26

3. Parameters:

o cityname: Map to @sys.geo-city.

o countryname: Map to @sys.geo-country (optional but recommended for

accuracy).

Step 3: Design the Flow

1. Start Page:

o Add an entry route triggered by GetWeather intent.

Set parameters:

"parameters": {
 "cityname": "$session.params.cityname",
 "countryname": "$session.params.countryname"
}

Transition to WeatherPage.

 WeatherPage:

● Enable webhook fulfillment to call your FastAPI endpoint.

Step 4: Implement the FastAPI Webhook

Use the provided code to create a webhook that processes city/country inputs and fetches

weather data.

Code Explanation

from fastapi import FastAPI, Request
import requests

app = FastAPI()

@app.post("/webhook/weather")
async def webhook(request: Request):
 try:
 body = await request.json()

27

 # Extract city and country from Dialogflow parameters
 city_name = body.get("intentInfo", {}).get("parameters",
{}).get("cityname", {}).get("resolvedValue")
 country_name = body.get("intentInfo", {}).get("parameters",
{}).get("countryname", {}).get("resolvedValue")

 response_text = ""
 try:
 # Call the weather API (replace with your API endpoint)
 url =
f"https://p2pclouds.up.railway.app/v1/learn/weather?city={city_name}"
 response = requests.get(url)
 data = response.json()

 # Extract weather details
 temp_c = data.get("current", {}).get("temp_c")
 feelslike_c = data.get("current", {}).get("feelslike_c")
 wind_kph = data.get("current", {}).get("wind_kph")
 humidity = data.get("current", {}).get("humidity")
 api_city = data.get("location", {}).get("name")
 api_country = data.get("location", {}).get("country")

 # Format the response
 response_text = f"""

 🌤️ **Weather in {api_city}, {api_country}**:

 - Temperature: {temp_c}°C (Feels like {feelslike_c}°C)
 - Wind Speed: {wind_kph} km/h
 - Humidity: {humidity}%
 """
 except Exception as e:

 response_text = f"⚠️ Failed to fetch weather for {city_name}. Please

try again later."

 # Return the response to Dialogflow
 return {
 "fulfillmentResponse": {
 "messages": [{"text": {"text": [response_text]}}]
 }
 }
 except Exception as e:
 return {
 "fulfillmentResponse": {

 "messages": [{"text": {"text": ["❌ An error occurred. Please try

again!"]}}]
 }
 }

28

Step 5: Configure Fulfillment in Dialogflow CX

1. Enable Webhook:

o In the WeatherPage, go to Entry Fulfillment → Enable Webhook.

o Set the URL to your FastAPI endpoint (e.g., https://your-ngrok-

url.ngrok.io/webhook/weather).

2. Deploy with ngrok:

o Run ngrok http 8000 to expose your local FastAPI server.

o Update the webhook URL in Dialogflow CX with the ngrok HTTPS URL.

Step 6: Test the Chatbot

1. Use the Dialogflow CX Simulator:

o User: “What’s the weather in London, UK?”

o Bot: “ Weather in London, UK: Temperature: 18°C (Feels like 17°C),

Wind Speed: 15 km/h, Humidity: 65%”

2. Edge Cases:

o Test invalid cities: “What’s the weather in XYZ?” → Bot returns an error

message.

Common Issues and Fixes

1. API Rate Limits:

o Use a paid API key (e.g., WeatherAPI Premium) for higher request limits.

2. Parameter Extraction Failures:

o Add validation logic to handle missing city/country names:

if not city_name:

 response_text = "🔍 Please specify a city name!"

Conclusion

29

You’ve now built a fully functional weather chatbot using Dialogflow CX and FastAPI.

This chatbot can be integrated with platforms like WhatsApp, Google Assistant, or your

website to provide real-time weather updates. In the next chapter, you’ll learn how

to deploy the chatbot at scale and add analytics for performance monitoring.

