

JavaScript from Beginner to
Professional

Learn JavaScript quickly by building fun, interactive,
and dynamic web apps, games, and pages

Laurence Lars Svekis

Maaike van Putten

Rob Percival

BIRMINGHAM—MUMBAI

JavaScript from Beginner to Professional
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Divya Mudaliar
Project Editor: Namrata Katare
Content Development Editor: Edward Doxey
Copy Editor: Safis Editing
Technical Editor: Karan Sonawane
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Presentation Designer: Pranit Padwal

First published: December 2021

Production reference: 1081221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-252-3

www.packt.com

www.packt.com

Contributors

About the authors
Laurence Lars Svekis is an innovative technology expert with a wide range of
expertise and real-world experience in web development, having worked on various
web development projects, both large and small, since 1999. He has been a top course
instructor since 2015, and has a passion for bringing ideas to life online. Teaching
and helping others has been an amazing opportunity for him, as he enjoys sharing
knowledge with others. He has an enthusiasm for education and a desire to help
others experience the joy of application development and web design.

Thanks to Alexis and Sebastian for all their support.

Maaike van Putten is a software developer and trainer with a passion for software
development and helping others get to the next level in their career. Some of her
favorite languages are JavaScript, Java, and Python. She participates as a developer
in software development projects and as a trainer in various topics, ranging from
IT for dummies to advanced topics for senior software developers. Next to that, she
loves to create online content for diverse platforms to help larger audiences.

Rob Percival is a highly regarded web developer and Udemy instructor with
over 1.7 million students. Over 500,000 of them have taken Rob's Complete Web
Developer Course 2.0, as well as his Android Developer and iOS Developer courses.

About the reviewer
Chris Minnick is a prolific author, blogger, trainer, speaker, and web developer.
His company, WatzThis?, is dedicated to finding better ways to teach computer and
programming skills to beginners.

Chris has been a full-stack developer for over 25 years and a trainer for over 10 years.
He has taught web development, ReactJS, and advanced JavaScript at many of the
world's largest companies, as well as at public libraries, co-working spaces, and
meetups.

Minnick has authored and co-authored over a dozen technical books for adults
and kids, including React JS Foundations, HTML and CSS for Dummies, Coding
with JavaScript for Dummies, JavaScript for Kids, Adventures in Coding, and Writing
Computer Code.

[v]

Table of Contents
Preface xix
Chapter 1: Getting Started with JavaScript 1

Why should you learn JavaScript? 2
Setting up your environment 3

Integrated Development Environment 3
Web browser 4
Extra tools 4
Online editor 4

How does the browser understand JavaScript? 4
Using the browser console 5

Practice exercise 1.1 7
Adding JavaScript to a web page 8

Directly in HTML 8
Practice exercise 1.2 9

Linking an external file to our web page 9
Practice exercise 1.3 10

Writing JavaScript code 11
Formatting code 11

Indentations and whitespace 11
Semicolons 12

Code comments 13
Practice exercise 1.4 13

Prompt 14
Random numbers 14

Chapter project 15
Creating an HTML file and a linked JavaScript file 15

Self-check quiz 16
Summary 16

Table of Contents

[vi]

Chapter 2: JavaScript Essentials 17
Variables 18

Declaring variables 18
let, var, and const 19
Naming variables 20

Primitive data types 20
String 21

Escape characters 22
Number 23
BigInt 24
Boolean 25
Symbol 25
Undefined 26
null 26

Analyzing and modifying data types 27
Working out the type of a variable 28
Converting data types 29
Practice exercise 2.1 32

Operators 32
Arithmetic operators 32

Addition 32
Subtraction 33
Multiplication 33
Division 34
Exponentiation 34
Modulus 35
Unary operators: increment and decrement 36
Combining the operators 37
Practice exercise 2.3 38

Assignment operators 38
Practice exercise 2.4 39

Comparison operators 40
Equal 40
Not equal 40
Greater than and smaller than 41

Logical operators 42
And 42
Or 43
Not 43

Chapter project 43
Miles-to-kilometers converter 43
BMI calculator 44

Self-check quiz 44
Summary 45

Table of Contents

[vii]

Chapter 3: JavaScript Multiple Values 47
Arrays and their properties 48

Creating arrays 48
Accessing elements 50
Overwriting elements 50
Built-in length property 51
Practice exercise 3.1 53

Array methods 53
Adding and replacing elements 53
Deleting elements 55
Finding elements 56
Sorting 58
Reversing 58
Practice exercise 3.2 59

Multidimensional arrays 59
Practice exercise 3.3 60

Objects in JavaScript 61
Updating objects 62
Practice exercise 3.4 63

Working with objects and arrays 64
Objects in objects 64
Arrays in objects 65
Objects in arrays 66
Objects in arrays in objects 66
Practice exercise 3.5 67

Chapter projects 68
Manipulating an array 68
Company product catalog 68

Self-check quiz 69
Summary 69

Chapter 4: Logic Statements 71
if and if else statements 72

Practice exercise 4.1 73
else if statements 74

Practice exercise 4.2 75
Conditional ternary operators 76

Practice exercise 4.3 76
switch statements 77

The default case 79
Practice exercise 4.4 80

Table of Contents

[viii]

Combining cases 81
Practice exercise 4.5 82

Chapter projects 82
Evaluating a number game 82
Friend checker game 83
Rock Paper Scissors game 83

Self-check quiz 83
Summary 86

Chapter 5: Loops 87
while loops 88

Practice exercise 5.1 90
do while loops 91

Practice exercise 5.2 92
for loops 92

Practice exercise 5.3 95
Nested loops 95

Practice exercise 5.4 97
Loops and arrays 98

Practice exercise 5.5 100
for of loop 101

Practice exercise 5.6 102
Loops and objects 102

for in loop 103
Practice exercise 5.7 104

Looping over objects by converting to an array 104
break and continue 107

break 108
continue 109
Practice exercise 5.8 111
break, continue, and nested loops 111
break and continue and labeled blocks 113

Chapter project 114
Math multiplication table 114

Self-check quiz 115
Summary 115

Chapter 6: Functions 117
Basic functions 118

Invoking functions 118
Writing functions 118

Table of Contents

[ix]

Naming functions 119
Practice exercise 6.1 120
Practice exercise 6.2 120

Parameters and arguments 120
Practice exercise 6.3 122
Default or unsuitable parameters 122

Special functions and operators 123
Arrow functions 124
Spread operator 125
Rest parameter 127

Returning function values 127
Practice exercise 6.4 129
Returning with arrow functions 129

Variable scope in functions 130
Local variables in functions 130

let versus var variables 132
const scope 133

Global variables 134
Immediately invoked function expression 136

Practice exercise 6.5 137
Recursive functions 138

Practice exercise 6.6 140
Nested functions 140

Practice exercise 6.7 142
Anonymous functions 142

Practice exercise 6.8 143
Function callbacks 143

Chapter projects 145
Create a recursive function 145
Set timeout order 145

Self-check quiz 146
Summary 147

Chapter 7: Classes 149
Object-oriented programming 150
Classes and objects 150
Classes 152

Constructors 152
Practice exercise 7.1 154

Methods 154
Practice exercise 7.2 156

Table of Contents

[x]

Properties 156
Getters and setters 157

Inheritance 159
Prototypes 161

Practice exercise 7.3 163
Chapter projects 163

Employee tracking app 163
Menu items price calculator 163

Self-check quiz 164
Summary 165

Chapter 8: Built-In JavaScript Methods 167
Introduction to built-in JavaScript methods 168
Global methods 169

Decoding and encoding URIs 169
decodeUri() and encodeUri() 170
decodeUriComponent() and encodeUriComponent() 171
Encoding with escape() and unescape() 172
Practice exercise 8.1 172

Parsing numbers 172
Making integers with parseInt() 172
Making floats with parseFloat() 174

Executing JavaScript with eval() 175
Array methods 176

Performing a certain action for every item 176
Filtering an array 177
Checking a condition for all elements 178
Replacing part of an array with another part of the array 178
Mapping the values of an array 179
Finding the last occurrence in an array 179
Practice exercise 8.2 180
Practice exercise 8.3 181

String methods 181
Combining strings 181
Converting a string to an array 182
Converting an array to a string 182
Working with index and positions 183
Creating substrings 185
Replacing parts of the string 185
Uppercase and lowercase 186
The start and end of a string 187

Table of Contents

[xi]

Practice exercise 8.4 188
Practice exercise 8.5 189

Number methods 190
Checking if something is (not) a number 190
Checking if something is finite 190
Checking if something is an integer 191
Specifying a number of decimals 192
Specifying precision 192

Math methods 192
Finding the highest and lowest number 193
Square root and raising to the power of 193
Turning decimals into integers 194
Exponent and logarithm 196
Practice exercise 8.6 196

Date methods 196
Creating dates 197
Methods to get and set the elements of a date 198
Parsing dates 200
Converting a date to a string 200
Practice exercise 8.7 201

Chapter projects 201
Word scrambler 201
Countdown timer 202

Self-check quiz 203
Summary 204

Chapter 9: The Document Object Model 205
HTML crash course 206

HTML elements 206
HTML attributes 210

The BOM 211
Practice exercise 9.1 214
Window history object 214
Window navigator object 215
Window location object 216

Practice exercise 9.2 217
The DOM 217

Additional DOM properties 219
Selecting page elements 220
Practice exercise 9.3 221

Table of Contents

[xii]

Chapter project 222
Manipulating HTML elements with JavaScript 222

Self-check quiz 222
Summary 223

Chapter 10: Dynamic Element Manipulation Using the DOM 225
Basic DOM traversing 226

Practice exercise 10.1 228
Selecting elements as objects 229

Changing innerText 230
Changing innerHTML 230

Accessing elements in the DOM 230
Accessing elements by ID 231

Practice exercise 10.2 232
Accessing elements by tag name 232

Practice exercise 10.3 233
Accessing elements by class name 234

Practice exercise 10.4 234
Accessing elements with a CSS selector 234

Using querySelector() 235
Using querySelectorAll() 236

Element click handler 237
This and the DOM 238

Practice exercise 10.7 239
Manipulating element style 240
Changing the classes of an element 243

Adding classes to elements 243
Removing classes from elements 244
Toggling classes 246

Manipulating attributes 247
Practice exercise 10.8 249

Event listeners on elements 251
Practice exercise 10.9 253

Creating new elements 253
Practice exercise 10.10 255

Chapter projects 256
Collapsible accordion component 256
Interactive voting system 258
Hangman game 259

Self-check quiz 262
Summary 263

Table of Contents

[xiii]

Chapter 11: Interactive Content and Event Listeners 265
Introducing interactive content 266
Specifying events 266

Specifying events with HTML 266
Specifying events with JavaScript 266

Practice exercise 11.1 267
Specifying events with event listeners 267

Practice exercise 11.2 268
The onload event handler 268

Practice exercise 11.3 269
Mouse event handlers 270

Practice exercise 11.4 272
The event target property 272

Practice exercise 11.5 274
DOM event flow 275

Practice exercise 11.6 278
onchange and onblur 280

Practice exercise 11.7 281
Key event handler 282

Practice exercise 11.8 284
Drag and drop elements 285

Practice exercise 11.9 287
Form submission 289

Practice exercise 11.10 291
Animating elements 292

Practice exercise 11.11 293
Chapter projects 294

Build your own analytics 294
Star rating system 295
Mouse position tracker 296
Box clicker speed test game 297

Self-check quiz 299
Summary 299

Chapter 12: Intermediate JavaScript 301
Regular expressions 302

Specifying multiple options for words 303
Character options 304
Groups 307

Table of Contents

[xiv]

Practical regex 309
Searching and replacing strings 310
Email validation 312

Functions and the arguments object 314
Practice exercise 12.3 315

JavaScript hoisting 315
Using strict mode 316
Debugging 317

Breakpoints 318
Practice exercise 12.4 320

Error handling 325
Practice exercise 12.5 326

Using cookies 327
Practice exercise 12.6 329

Local storage 330
Practice exercise 12.7 332

JSON 333
Practice exercise 12.8 336
Parsing JSON 336

Practice exercise 12.9 337
Practice exercise 12.9 answers 337

Chapter projects 338
Email extractor 338
Form validator 339
Simple math quiz 341

Self-check quiz 342
Summary 343

Chapter 13: Concurrency 345
Introducing concurrency 346
Callbacks 346

Practice exercise 13.1 349
Promises 349

Practice exercise 13.2 352
async and await 353

Practice exercise 13.3 354
Event loop 355

Call stack and callback queue 355
Chapter project 359

Password checker 359
Self-check quiz 360
Summary 361

Table of Contents

[xv]

Chapter 14: HTML5, Canvas, and JavaScript 363
Introducing HTML5 with JavaScript 364
Local file reader 365

Uploading files 365
Reading files 367
Practice exercise 14.1 368

Getting position data with GeoLocation 369
HTML5 canvas 370

Practice exercise 14.2 373
Dynamic canvas 373

Adding lines and circles to the canvas 374
Practice exercise 14.3 376

Adding text to the canvas 377
Practice exercise 14.4 378

Adding and uploading images to the canvas 380
Practice exercise 14.5 383

Adding animations to the canvas 383
Practice exercise 14.6 385

Drawing on canvas with a mouse 386
Practice exercise 14.7 389

Saving dynamic images 390
Media on the page 392
Digital accessibility in HTML 394
Chapter projects 395

Create a Matrix effect 395
Countdown clock 397
Online paint app 399

Self-check quiz 401
Summary 402

Chapter 15: Next Steps 403
Libraries and frameworks 404

Libraries 405
jQuery 405
D3 408
Underscore 409
React 410

Frameworks 412
Vue.js 412
Angular 414

Learning the backend 415
APIs 416

Table of Contents

[xvi]

AJAX 417
Practice exercise 15.1 418

Node.js 418
Using the Express Node.js framework 419

Next steps 420
Chapter projects 421

Working with JSON 421
List-making project 421

Self-check quiz 422
Summary 423

Appendix – Practice Exercise, Project,
and Self-Check Quiz Answers 425

Chapter 1, Getting Started with JavaScript 425
Practice exercises 425
Projects 426

Creating an HTML file and a linked JavaScript file 426
Self-check quiz 427

Chapter 2, JavaScript Essentials 427
Practice exercises 427
Projects 428

Miles-to-kilometers converter 428
BMI calculator 428

Self-check quiz 429
Chapter 3, JavaScript Multiple Values 429

Practice exercises 429
Projects 431

Manipulating an array 431
Company product catalog 431

Self-check quiz 432
Chapter 4, Logic Statements 432

Practice exercises 432
Projects 434

Evaluating a number game answers 434
Friend checker game answers 435
Rock paper scissors game answers 435

Self-check quiz 436
Chapter 5, Loops 436

Practice exercises 436
Project 441

Math multiplication table 441

Table of Contents

[xvii]

Self-check quiz 442
Chapter 6, Functions 442

Practice exercises 442
Projects 445

Create a recursive function 445
Set timeout order 445

Self-check quiz 446
Chapter 7, Classes 446

Practice exercises 446
Projects 448

Employee tracking app 448
Menu items price calculator 448

Self-check quiz 449
Chapter 8, Built-In JavaScript Methods 449

Practice exercises 449
Projects 452

Word scrambler 452
Countdown timer 452

Self-check quiz 453
Chapter 9, The Document Object Model 453

Practice exercises 453
Projects 454

Manipulating HTML elements with JavaScript 454
Self-check quiz 455

Chapter 10, Dynamic Element Manipulation Using the DOM 456
Practice exercises 456
Projects 461

Collapsible accordion component 461
Interactive voting system 461
Hangman game 462

Self-check quiz 464
Chapter 11, Interactive Content and Event Listeners 465

Practice exercises 465
Projects 473

Build your own analytics 473
Star rater system 474
Mouse position tracker 475
Box clicker speed test game 476

Self-check quiz 477
Chapter 12, Intermediate JavaScript 477

Practice exercises 477

Table of Contents

[xviii]

Projects 482
Email extractor 482
Form validator 483
Simple math quiz 484

Self-check quiz 485
Chapter 13, Concurrency 486

Practice exercises 486
Projects 487

Password checker 487
Self-check quiz 488

Chapter 14, HTML5, Canvas, and JavaScript 489
Practice exercises 489
Projects 496

Create a Matrix effect 496
Countdown clock 497
Online paint app 499

Self-check quiz 500
Chapter 15, Next Steps 501

Practice exercises 501
Projects 501

Working with JSON 501
List-making project 502

Self-check quiz 504
Other Books You May Enjoy 507
Index 513

[xix]

Preface
JavaScript is an amazing multi-functional language that is used a lot for web
development (among other things). Any interaction that happens on web pages is
JavaScript in action. In fact, all modern browsers understand JavaScript—and soon
you will understand it too.

This book deals with everything you need to know to create JavaScript applications
and use JavaScript on web pages. By the time you finish this book, you'll be capable
of creating interactive web pages, dynamic applications, and a lot more as you
progress on your professional JavaScript journey!

Who this book is for
To get started with this book, you don't need any JavaScript experience. However,
if you do have some coding experience, you're likely to go through the book and
exercises with a bit more ease. Basic familiarity with HTML and CSS would be of
benefit. If you're a first-time programmer, we are honored to welcome you to the
world of programming in this book. It may seem difficult in the beginning, but we'll
guide you right through it.

What this book covers
Chapter 1, Getting Started with JavaScript, covers some fundamentals of the JavaScript
language that you'll have to know to understand the rest of the book.

Chapter 2, JavaScript Essentials, deals with essentials such as variables, data types, and
operators.

Chapter 3, JavaScript Multiple Values, covers how to store multiple values in one
variable using arrays and objects.

Preface

[xx]

Chapter 4, Logic Statements, is where the real fun starts: we are going to use logic
statements to make decisions for us!

Chapter 5, Loops, accounts for situations when it is necessary to repeat a block of code,
which is what we use loops for. We are using different types of loops, such as the for
and the while loop.

Chapter 6, Functions, introduces a very useful block for repeating code snippets:
functions! This enables us to invoke a specified code block at any time in our script
to do something for us. This will help you to not repeat yourself, which is one of
the fundamental principles of writing clean code.

Chapter 7, Classes, continues with building blocks of JavaScript that help us to
structure our application better. We have already seen how to create objects, and
with classes we learn how to create a template for objects that we can reuse anytime
we need that particular type of object.

Chapter 8, Built-In JavaScript Methods, deals with some great built-in functionality.
Functions are something we can write ourselves, but we'll find ourselves using the
built-in JavaScript functions often whenever we need to do common tasks, such as
checking whether something is a number or not.

Chapter 9, The Document Object Model, dives into the browser object model and
document object model (DOM). This is going to enrich the way we can use JavaScript
by a lot. We'll learn what the DOM is, and how we can affect it with JavaScript and
change our websites by doing so.

Chapter 10, Dynamic Element Manipulation Using the DOM, demonstrates how to
manipulate the elements of the DOM dynamically, which will enable you to create
modern user experiences. We can change our website as a response to user behavior
such as clicking on a button.

Chapter 11, Interactive Content and Event Listeners, takes our responses to the user to
the next level. For example, we are going to learn how to respond to events such as
the cursor leaving an input box and the mouse of the user moving.

Chapter 12, Intermediate JavaScript, deals with topics that you'll need to write
intermediate JavaScript code, such as regular expressions, recursion, and debugging,
to boost the performance of your code.

Chapter 13, Concurrency, introduces the topic of concurrency and asynchronous
programming, which will allow our code to do multiple things at the same time and
be truly flexible.

Preface

[xxi]

Chapter 14, HTML5, Canvas, and JavaScript, focuses on HTML5 and JavaScript. We'll
have seen a lot of both HTML and JavaScript in the previous chapters, but here we'll
be focusing on the HTML5-specific features, such as the canvas element.

Chapter 15, Next Steps, explores the next steps you could take after you've gotten
all the fundamental features of JavaScript down and you are able to write nifty
programs using JavaScript. We'll take a look at some of the famous JavaScript
libraries and development frameworks, such as Angular, React, and Vue, and we'll
have a look at Node.js to see how the backend can be written in JavaScript.

To get the most out of this book
Previous coding experience will help, but is definitely not required. If you have a
computer with a text editor (such as Notepad or TextEdit, not Word!) and a browser,
you can get started with this book. We encourage you to engage with the exercises
and projects, and experiment continually while you go through the chapters, to
ensure you are comfortable with each concept before moving on.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/JavaScript-from-Beginner-to-Professional. We also have other
code bundles from our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800562523_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter
handles. For example; "We also need to let the browser know what kind of document
we're working on with the <!DOCTYPE> declaration."

https://github.com/PacktPublishing/JavaScript-from-Beginner-to-Professional
https://github.com/PacktPublishing/JavaScript-from-Beginner-to-Professional
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800562523_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800562523_ColorImages.pdf

Preface

[xxii]

A block of code is set as follows:

<html>
 <script type="text/javascript">
 alert("Hi there!");
 </script>
</html>

Any command-line input or output is written as follows:

console.log("Hello world!")

Bold: Indicates a new term, an important word, or words that you see on the screen,
for example, in menus or dialog boxes, also appear in the text like this. For example:
"If you right-click and select Inspect on macOS systems, you will see a screen appear,
similar to the one in the following screenshot."

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com, and mention the book's title in the
subject of your message. If you have questions about any aspect of this book, please
email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book we would be grateful
if you would report this to us. Please visit, http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata

Preface

[xxiii]

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address
or website name. Please contact us at copyright@packtpub.com with a link to the
material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit http://authors.packtpub.com.

Share Your Thoughts
Once you've read JavaScript from Beginner to Professional, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this
book and share your feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1800562527

[1]

1
Getting Started
with JavaScript

It appears you have decided to start learning JavaScript. Excellent choice! JavaScript
is a programming language that can be used on both the server side and client side of
applications. The server side of an application is the backend logic that usually runs
on computers in data centers and interacts with the database, while the client side is
what runs on the device of the user, often the browser for JavaScript.

It is not unlikely that you have used functionality written in JavaScript. If you have
used a web browser, such as Chrome, Firefox, Safari, or Edge, then you definitely
have. JavaScript is all over the web. If you enter a web page and it asks you to
accept cookies and you click OK, the popup disappears. This is JavaScript in action.
And if you want to navigate a website and a sub-menu opens up, that means more
JavaScript. Often, when you filter products in a web shop, this involves JavaScript.
And what about these chats that start talking to you after you have been on a
website for a certain number of seconds? Well, you guessed it—JavaScript!

Pretty much any interaction we have with web pages is because of JavaScript; the
buttons you are clicking, birthday cards you are creating, and calculations you are
doing. Anything that requires more than a static web page needs JavaScript.

In this chapter, we will cover the following topics:

• Why should you learn JavaScript?
• Setting up your environment
• How does the browser understand JavaScript?

Getting Started with JavaScript

[2]

• Using the browser console
• Adding JavaScript to a web page
• Writing JavaScript code

Why should you learn JavaScript?
There are many reasons why you should want to learn JavaScript. JavaScript
originates from 1995, and is often considered the most widely used programming
language. This is because JavaScript is the language that web browsers support
and understand. You have everything you need to interpret it already installed on
your computer if you have a web browser and text editor. There are better setups,
however, and we will discuss these later in this chapter.

It is a great programming language for beginners, and most advanced software
developers will know at least some JavaScript because they will have run into it at
some point. JavaScript is a great choice for beginners for a number of reasons. The
first reason is that you can start building really cool apps using JavaScript sooner
than you could imagine. By the time you get to Chapter 5, Loops, you will be able to
write quite complex scripts that interact with users. And by the end of the book, you
will be able to write dynamic web pages to do all sorts of things.

JavaScript can be used to write many different types of applications and scripts. It
can be used for programming for the web browser, but also the logic layer of code
that we cannot see (such as communication with the database) of an application
can be programmed in JavaScript, along with games, automation scripts, and a
plethora of other purposes. JavaScript can also be used for different programming
styles, by which we mean ways to structure and write code. How you would go
about this depends on the purpose of your script. If you've never coded before, you
may not quite grasp these concepts, and it's not entirely necessary to at this stage,
but JavaScript can be used for (semi) object-oriented, functional, and procedural
programming, which are just different programming paradigms.

There are a ton of libraries and frameworks you can use once you get the basics of
JavaScript down. These libraries and frameworks will really enhance your software
life and make it a lot easier and possible to get more done in less time. Examples of
these great libraries and frameworks include React, Vue.js, jQuery, Angular, and
Node.js. Don't worry about these for now; just see them as a bonus for later. We will
cover some of them briefly at the very end of this book.

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 1

[3]

Finally, we'll mention the JavaScript community. JavaScript is a very popular
programming language, and many people are using it. As a beginner in particular,
there won't be a problem for which you cannot find a solution on the internet.

The community of JavaScript is huge. The popular Stack Overflow forum contains
lots of help for all sorts of coding issues and has an enormous section on JavaScript.
You'll find yourself running into this web page a lot while googling problems and
tips and tricks.

If JavaScript is your first programming language, you are new to the whole software
community and you are in for a treat. Software developers, no matter the language,
love to help one another. There are forums and tutorials online and you can find
answers to almost all your questions. As a beginner, it can be hard to understand
all the answers though. Just hang in there, keep trying and learning, and you will
understand it soon enough.

Setting up your environment
There are many ways in which you can set up a JavaScript coding environment. For
starters, your computer probably already has all the minimal things you will need to
code JavaScript. We recommend you make your life a little bit easier and use an IDE.

Integrated Development Environment
An Integrated Development Environment (IDE) is a special application that is used
to write, run, and debug code. You can just open it like you would any program. For
example, to write a text document, you need to open the program, select the right
file, and start to write. Coding is similar. You open the IDE and write the code. If
you want to execute the code, the IDE often has a special button for this. Pressing
this button will run the code from inside the IDE. For JavaScript, you might find
yourself opening your browser manually in certain cases though.

An IDE does do more than that though; it usually has syntax highlighting. This
means that certain elements in your code will have a certain color, and you can
easily see when something is going wrong. Another great feature is the autosuggest
feature, where the editor helps you with the options you have at the place where you
are coding. This is often called code completion. Many IDEs have special plugins
so you can make working with other tools more intuitive and add features to it, for
example, a hot reload in the browser.

There are many IDEs out there and they differ in what they have to offer. We use
Visual Studio Code throughout the book, but that's a personal preference. Other
popular ones at the time of writing include Atom, Sublime Text, and WebStorm.

Getting Started with JavaScript

[4]

There are many IDEs and they keep on appearing, so chances are the most popular
one at the time you are reading is not on this list. There are many other options. You
can do a quick search on the web for JavaScript IDEs. There are a few things to pay
attention to when selecting an IDE. Make sure that it supports syntax highlighting,
debugging, and code completion for JavaScript.

Web browser
You will also need a web browser. Most browsers are perfectly fine for this, but
it's better not to use Internet Explorer, which doesn't support the latest JavaScript
features. Two good options would be Chrome and Firefox. They support the latest
JavaScript features and helpful plugins are available.

Extra tools
There are many extra things you can use while coding, for example, browser plugins
that will help you to debug or make things easier to look at. You don't really need
any of them at this point, but keep an open mind whenever you come across a tool
that others are very excited about.

Online editor
It may be the case that you don't have access to a computer, perhaps just a tablet,
or that you cannot install anything on your laptop. There are great online editors
out there for these scenarios as well. We don't name any, since they are evolving
rapidly and probably will be old by the time you are reading this. But if you do
a web search for online JavaScript IDE, you will find plenty of online options
where you can just start coding JavaScript and hit a button to run it.

How does the browser understand
JavaScript?
JavaScript is an interpreted language, which means that the computer understands
it while running it. Some languages get processed before running, this is called
compiling, but not JavaScript. The computer can just interpret JavaScript on the fly.
The "engine" that understands JavaScript will be called the interpreter here.

Chapter 1

[5]

A web page isn't just JavaScript. Web pages are written in three languages: HTML,
CSS, and JavaScript.

HTML determines what is on the page; the content of the page is in there. If there is
a paragraph on the page, the HTML of the page contains a paragraph. And if there
is a heading, HTML was used to add a heading, and so forth. HTML consists of
elements, also called tags. They specify what is on the page. Here is a little sample
that will create a web page with the text Hello world on it:

<html>
 <body>
 Hello world!
 </body>
</html>

In Chapter 9, The Document Object Model, we have a little crash course in HTML, so
don't worry if you have never seen it.

CSS is the layout of the web page. So for example, if the text color is blue, this is done
by CSS. Font size, font family, and position on the page are all determined by CSS.
JavaScript is the final piece in the puzzle, which defines what the web page can do
and how it can interact with the user or the backend.

When dealing with JavaScript, you will come across the term ECMAScript sooner
or later. This is the specification or standardization for the JavaScript language.
The current standard is ECMAScript 6 (also referred to as ES6). Browsers use
this specification to support JavaScript (in addition to some other topics such as
Document Object Model (DOM), which we'll see later). JavaScript has many
implementations that might differ slightly, but ECMAScript can be considered the
basic specification that the JavaScript implementation will definitely include.

Using the browser console
You may have seen this already, or not, but web browsers have a built-in option
to see the code that makes the web page you are on possible. If you hit F12 on a
Windows computer while you are in the web browser, or you right-click and select
Inspect on macOS systems, you will see a screen appear, similar to the one in the
following screenshot.

Getting Started with JavaScript

[6]

It might work slightly differently on your browser on your machine, but right-
clicking and selecting Inspect generally does the trick:

Figure 1.1: Browser console on the Packt website

This screenshot contains multiple tabs at the top. We are now looking at the element
tabs, which contain all the HTML and CSS (remember those?). If you click on the
console tab, you will find at the bottom of the panel a place where you can insert
some code directly. You may see some warnings or error messages in this tab. This
is not uncommon, and don't worry about it if the page is working.

The console is used by developers to log what is going on and do any debugging.
Debugging is finding the problem when an application is not displaying the desired
behavior. The console gives some insights as to what is happening if you log
sensible messages. This is actually the first command we are going to learn:

console.log("Hello world!");

If you click on this console tab, enter the first JavaScript code above, and then
hit Enter, this will show you the output of your code therein. It will look like the
following screenshot:

Chapter 1

[7]

Figure 1.2: JavaScript in the browser console

You will be working with the console.log() statement a lot throughout the book in
your code to test your code snippets and see the results. There are also other console
methods, such as console.table(), that create a table when the inputted data can be
presented as a table. Another console method is console.error(), which will log the
inputted data, but with a styling that draws attention to the fact that it's an error.

Practice exercise 1.1
Working with the console:

1. Open the browser console, type 4 + 10, and press Enter. What do you see as
the response?

2. Use the console.log() syntax, placing a value within the rounded brackets.
Try entering your name with quotes around it (this is to indicate the fact that
it's a text string—we'll get to this in the next chapter).

Getting Started with JavaScript

[8]

Adding JavaScript to a web page
There are two ways to link JavaScript to a web page. The first way is to type the
JavaScript directly in the HTML between two <script> tags. In HTML, the first tag,
<script>, is to declare that the following script will be executed. Then we have the
content that should be inside this element. Next, we close the script with the same
tag, but preceded by a forward slash, </script>. Or you can link a JavaScript file to
the HTML file using the script tag at the head of the HTML page.

Directly in HTML
Here is an example of how to write a very simple web page that will give a pop-up
box saying Hi there!:

<html>
 <script type="text/javascript">
 alert("Hi there!");
 </script>
</html>

If you store this as a .html file, and open the file in your browser, you will get
something like the following screenshot. We will be storing this one as Hi.html:

Figure 1.3: JavaScript made this popup with the text "Hi there!" appear

The alert command will create a popup that provides a message. This message is
specified between the parentheses behind the alert.

Right now, we have the content directly within our <html> tags. This is not a best
practice. We will need to create two elements inside <html>—<head> and <body>.
In the head element, we write metadata and we also use this part later to connect
external files to our HTML file. In the body, we have the content of the web page.

We also need to let the browser know what kind of document we're working on
with the <!DOCTYPE> declaration. Since we're writing JavaScript inside an HTML file,
we need to use <!DOCTYPE html>. Here's an example:

Chapter 1

[9]

<!DOCTYPE html>
<html>

<head>
 <title>This goes in the tab of your browser</title>
</head>

<body>
The content of the webpage
 <script>
 console.log("Hi there!");
 </script>
</body>

</html>

This example web page will display the following: The content of the webpage. If
you look in the browser console, you'll find a surprise! It has executed the JavaScript
as well and logs Hi there! in the console.

Practice exercise 1.2
JavaScript in an HTML page:

1. Open your code editor and create an HTML file.
2. Within your HTML file, set up the HTML tags, doctype, HTML, head, and

body, and then proceed and add the script tags.
3. Place some JavaScript code within the script tags. You can use console.

log("hello world!").

Linking an external file to our web page
You could also link an external file to the HTML file. This is considered a better
practice, as it organizes code better and you can avoid very lengthy HTML pages
due to the JavaScript. In addition to these benefits, you can reuse the JavaScript on
other web pages of your website without having to copy and paste. Say that you
have the same JavaScript on 10 pages and you need to make a change to the script.
You would only have to change one file if you did it in the way we are showing you
in this example.

Getting Started with JavaScript

[10]

First, we are going to create a separate JavaScript file. These files have the postfix .js.
I'm going to call it ch1_alert.js. This will be the content of our file:

alert("Saying hi from a different file!");

Then we are going to create a separate HTML file (using the postfix .html again).
And we are going to give it this content:

<html>
 <script type="text/javascript" src="ch1_alert.js"></script>
</html>

Make sure that you put the files in the same location, or that you specify the path to
the JavaScript file in your HTML. The names are case-sensitive and should match
exactly.

You have two options. You can use a relative path and an absolute path. Let's cover
the latter first since that is the easiest to explain. Your computer has a root. For Linux
and macOS, it is /, and for Windows, it is often C:/. The path to the file starting from
the root is the absolute path. This is the easiest to add because it will work on your
machine. But there is a catch: on your machine, if this website folder later gets moved
to a server, the absolute path will no longer work.

The second, safer option is relative paths. You specify how to get there from the
file you are in at that time. So if it's in the same folder, you will only have to insert
the name. If it's in a folder called "example" that is inside the folder that your file is
in, you will have to specify example/nameOfTheFile.js. And if it's a folder up, you
would have to specify ../nameOfTheFile.js.

If you open the HTML file, this is what you should get:

Figure 1.4: Popup created by JavaScript in a different file

Practice exercise 1.3
Linking to a JS JavaScript file:

Chapter 1

[11]

1. Create a separate file called app with the extension .js.
2. Within the .js file, add some JavaScript code.
3. Link to the separate .js file within the HTML file you created in Practice

exercise 1.2.
4. Open the HTML file within your browser and check to see whether the

JavaScript code ran properly.

Writing JavaScript code
So, we now have lots of context, but how do you actually write JavaScript code?
There are some important things to keep in mind, such as how to format the code,
using the right indentation level, using semicolons, and adding comments. Let's
start with formatting code.

Formatting code
Code needs to be formatted well. If you have a long file with many lines of code
and you didn't stick to a few basic formatting rules, it is going to be hard to
understand what you've written. So, what are the basic formatting rules? The two
most important for now are indentations and semicolons. There are also naming
conventions, but these will be addressed for every topic that is yet to come.

Indentations and whitespace
When you are writing code, often a line of code belongs to a certain code block (code
between two curly brackets { like this }) or parent statement. If that is the case,
you give the code in that block one indentation to make sure that you can see easily
what is part of the block and when a new block starts. You don't need to understand
the following code snippet, but it will demonstrate readability with and without
indentations.

Without new lines:

let status = "new"; let scared = true; if (status === "new") { console.
log("Welcome to JavaScript!"); if (scared) { console.log("Don't worry
you will be fine!"); } else { console.log("You're brave! You are going
to do great!"); } } else { console.log("Welcome back, I knew you'd like
it!"); }

Getting Started with JavaScript

[12]

With new lines but without indentation:

let status = "new";
let scared = true;
if (status === "new") {
console.log("Welcome to JavaScript!");
if (scared) {
console.log("Don't worry you will be fine!");
} else {
console.log("You're brave! You are going to do great!");
}
} else {
console.log("Welcome back, I knew you'd like it!");
}

With new lines and indentation:

let status = "new";
let scared = true;
if (status === "new") {
 console.log("Welcome to JavaScript!");
 if (scared) {
 console.log("Don't worry you will be fine!");
 } else {
 console.log("You're brave! You are going to do great!");
 }
} else {
 console.log("Welcome back, I knew you'd like it!");
}

As you can see, you can now easily see when the code blocks end. This is where
the if has a corresponding } at the same indentation level. In the example without
indentations, you would have to count the brackets to determine when the if block
would end. Even though it is not necessary for working code, make sure to use
indentation well. You will thank yourself later.

Semicolons
After every statement, you should insert a semicolon. JavaScript is very forgiving
and will understand many situations in which you have forgotten one, but develop
the habit of adding one after every line of code early. When you declare a code block,
such as an if statement or loop, you should not end with a semicolon. It is only for
the separate statements.

Chapter 1

[13]

Code comments
With comments, you can tell the interpreter to ignore some lines of the file. They
won't get executed if they are comments. It is often useful to be able to avoid
executing a part of the file. This could be for the following reasons:

1. You do not want to execute a piece of code while running the script, so you
comment it out so it gets ignored by the interpreter.

2. Metadata. Adding some context to the code, such as the author, and a
description of what the file covers.

3. Adding comments to specific parts of the code to explain what is happening
or why a certain choice has been made.

There are two ways to write comments. You can either write single-line comments or
multi-line comments. Here is an example:

// I'm a single line comment
// console.log("single line comment, not logged");

/* I'm a multi-line comment. Whatever is between the slash asterisk and
the asterisk slash will not get executed.
console.log("I'm not logged, because I'm a comment");
*/

In the preceding code snippet, you see both commenting styles. The first one is
single-line. This can also be an inline comment at the end of the line. Whatever comes
after the // on the line will get ignored. The second one is multiline; it is written by
starting with /* and ending with */.

Practice exercise 1.4
Adding comments:

1. Add a new statement to your JavaScript code by setting a variable value.
Since we will cover this in the next chapter, you can use the following line:

let a = 10;

2. Add a comment at the end of the statement indicating that you set a value of
10.

3. Print the value using console.log(). Add a comment explaining what this
will do.

Getting Started with JavaScript

[14]

4. At the end of your JavaScript code, use a multiple-line comment. In a real
production script, you might use this space to add a brief outline of the
purpose of the file.

Prompt
Another thing we would like to show you here is also a command prompt. It works
very much like an alert, but instead, it takes input from the user. We will learn how
to store variables very soon, and once you know that, you can store the result of this
prompt function and do something with it. Go ahead and change the alert() to a
prompt() in the Hi.html file, for example, like this:

prompt("Hi! How are you?");

Then, go ahead and refresh the HTML. You will get a popup with an input box in
which you can enter text, as follows:

Figure 1.5: Page prompting for use input

The value you (or any other user) enter will be returned to the script, and can be
used in your code! This is great for getting user input to shape the way your code
works.

Random numbers
For the purpose of fun exercises in the early chapters of this book, we would like
you to know how to generate a random number in JavaScript. It is absolutely fine
if you don't really understand what is going on just yet; just know that this is the
command to create a random number:

Math.random();

Chapter 1

[15]

We can do it in the console and see the result appear if we log it:

console.log(Math.random());

This number will be a decimal between 0 and 1. If we want a number between 0 and
100, we can multiply it by 100, like this:

console.log(Math.random() * 100);

If we don't want to have a decimal result, we can use the Math.floor function on it,
which is rounding it down to the nearest integer:

console.log(Math.floor(Math.random() * 100));

Don't worry about not getting this yet. This will be explained in more detail further
on in the book. In Chapter 8, Built-In JavaScript Methods, we will discuss built-in
methods in more detail. Until then, just trust us that this does generate a random
number between 0 and 100.

Chapter project

Creating an HTML file and a linked JavaScript
file
Create an HTML file and create a separate JavaScript file. Then, connect to the
JavaScript file from the HTML file.

1. In the JavaScript file, output your name into the console and add a multiple-
line comment to your code.

2. Try commenting out the console message in your JavaScript file so that
nothing shows in the console.

Don't worry, we will cover mathematic operators in Chapter 2,
JavaScript Essentials.

Getting Started with JavaScript

[16]

Self-check quiz
1. What is the HTML syntax to add an external JavaScript file?
2. Can you run JavaScript in a file with a JS extension in your browser?
3. How do you write a multiple-line comment in JavaScript?
4. What is the best way to remove a line of code from running that you might

want to keep as you debug?

Summary
Nicely done! You have made a start with JavaScript! In this chapter, we have
discussed a lot of context, which you will need to know before starting to code
JavaScript. We saw that we can use JavaScript for many purposes, and one of the
most popular use cases is the web. Browsers can work with JavaScript because they
have a special part, called an interpreter, that can process JavaScript. We saw that
we have multiple options for writing JavaScript on our computer. We will need an
IDE, a program that we can use to write and run our code.

Adding JavaScript to a web page can be done in several ways. We saw how to
include it in the script element and how to add a separate JavaScript file to a page.
We ended this chapter with some important general notes on how to write well-
structured, readable, and easy-to-maintain code that is well documented with
comments. We also saw that we can write to the console with our console.log()
method and ask for user input using prompt(). Lastly, we also saw that we can
generate random numbers with the Math.random() function.

Next, we'll look at JavaScript's basic data types and the operators that can be used
to manipulate them!

[17]

2
JavaScript Essentials

In this chapter, we will be dealing with some essential building blocks of JavaScript:
variables and operators. We will start with variables, what they are, and which
different variable data types exist. We need these basic building blocks to store and
work with variable values in our scripts, making them dynamic.

Once we've got the variables covered, we will be ready to deal with operators.
Arithmetic, assignment, and conditional and logical operators will be discussed at
this stage. We need operators to modify our variables or to tell us something about
these variables. This way we can do basic calculations based on factors such as user
input.

Along the way, we'll cover the following topics:

• Variables
• Primitive data types
• Analyzing and modifying data types
• Operators

Note: exercise, project, and self-check quiz answers can be found in
the Appendix.

JavaScript Essentials

[18]

Variables
Variables are the first building block you will be introduced to when learning most
languages. Variables are values in your code that can represent different values each
time the code runs. Here is an example of two variables in a script:

firstname = "Maaike";
x = 2;

And they can be assigned a new value while the code is running:

firstname = "Edward";
x = 7;

Without variables, a piece of code would do the exact same thing every single time
it was run. Even though that could still be helpful in some cases, it can be made
much more powerful by working with variables to allow our code to do something
different every time we run it.

Declaring variables
The first time you create a variable, you declare it. And you need a special word for
that: let, var, or const. We'll discuss the use of these three arguments shortly. The
second time you call a variable, you only use the name of the existing variable to
assign it a new value:

let firstname = "Maria";
firstname = "Jacky";

In our examples, we will be assigning a value to our variables in the code. This is
called "hardcoded" since the value of your variable is defined in your script instead
of coming dynamically from some external input. This is something you won't
be doing that often in actual code, as more commonly the value comes from an
external source, such as an input box on a website that a user filled out, a database,
or some other code that calls your code. The use of variables coming from external
sources instead of being hardcoded into a script is actually the reason that scripts
are adaptable to new information, without having to rewrite the code.

We have just established how powerful the variable building block is in code. Right
now, we are going to hardcode variables into our scripts, and they therefore will not
vary until a coder changes the program. However, we will soon learn how to make
our variables take in values from outside sources.

Chapter 2

[19]

let, var, and const
A variable definition consists of three parts: a variable-defining keyword (let, var,
or const), a name, and a value. Let's start with the difference between let, var, or
const. Here you can see some examples of variables using the different keywords:

let nr1 = 12;
var nr2 = 8;
const PI = 3.14159;

let and var are both used for variables that might have a new value assigned to
them somewhere in the program. The difference between let and var is complex.
It is related to scope.

var has global scope and let has block scope. var's global scope means that you can
use the variables defined with var in the entire script. On the other hand, let's block
scope means you can only use variables defined with let in the specific block of code
in which they were defined. Remember, a block of code will always start with { and
end with }, which is how you can recognize them.

On the other hand, const is used for variables that only get a value assigned once—
for example, the value of pi, which will not change. If you try reassigning a value
declared with const, you will get an error:

const someConstant = 3;
someConstant = 4;

This will result in the following output:

Uncaught TypeError: Assignment to constant variable.

We will be using let in most of our examples—for now, trust us that you should use
let in most cases.

If you understand the following sentences on scope, that is great,
but it is totally fine if you do not get it. You will understand it soon
enough as you keep working your way through the book.

JavaScript Essentials

[20]

Naming variables
When it comes to naming variables, there are some conventions in place:

• Variables start with a lowercase letter, and they should be descriptive. If
something holds an age, do not call it x, but age. This way, when you read
your script later, you can easily understand what you did by just reading
your code.

• Variables cannot contain spaces, but they can use underscores. If you use a
space, JavaScript doesn't recognize it as a single variable.

The value of your variable can be anything. Let's start with the easiest thing variables
can be: primitives.

Primitive data types
Now you know what variables are and why we need them in our code, it is time to
look at the different types of values we can store in variables. Variables get a value
assigned. And these values can be of different types. JavaScript is a loosely typed
language. This means that JavaScript determines the type based on the value. The
type does not need to be named explicitly. For example, if you declared a value of 5,
JavaScript will automatically define it as a number type.

A distinction exists between primitive data types and other, more complex data
types. In this chapter, we will cover the primitive type, which is a relatively simple
data structure. Let's say for now that they just contain a value and have a type.
JavaScript has seven primitives: String, Number, BigInt, Boolean, Symbol, undefined,
and null. We'll discuss each of them in more detail below.

We will be using camel case here. This means that when we want
to use multiple words to describe a variable, we will start with a
lowercase word, then use a capital for every new word after the
first word—for example: ageOfBuyer.

Whatever the convention is in the place you are working, the key
is consistency. If all naming is done in a similar format, the code
will look cleaner and more readable, which makes it a lot easier to
make a small change later.

Chapter 2

[21]

String
A string is used to store a text value. It is a sequence of characters. There are different
ways to declare a string:

• Double quotes
• Single quotes
• Backticks: special template strings in which you can use variables directly

The single and double quotes can both be used like so:

let singleString = 'Hi there!';
let doubleString = "How are you?";

The main difference between single quotes and double quotes is that you can use
single quotes as literal characters in double-quoted strings, and vice versa. If you
declare a string with single quotes, the string will end as soon as a second quote is
detected, even if it's in the middle of a word. So for example, the following will result
in an error, because the string will be ended at the second single quote within let's:

let funActivity = 'Let's learn JavaScript';

Let will be recognized as a string, but after that, the bunch of characters that follow
cannot be interpreted by JavaScript. However, if you declare the string using double
quotes, it will not end the string as soon as it hits the single quote, because it is
looking for another double quote. Therefore, this alternative will work fine:

let funActivity = "Let's learn JavaScript";

In the same way with double quotes, the following would not work:

let question = "Do you want to learn JavaScript? "Yes!"";

You can use the option you prefer, unless you are working on code
in which one of these options has already been chosen. Again,
consistency is key.

JavaScript Essentials

[22]

Again, the compiler will not distinguish between double quotes used in different
contexts, and will output an error.

In a string using backticks, you can point to variables and the variable's value will be
substituted into the line. You can see this in the following code snippet:

let language = "JavaScript";
let message = `Let's learn ${language}`;
console.log(message);

As you can see, you will have to specify these variables with a rather funky
syntax—don't be intimidated! Variables in these template strings are specified
between ${nameOfVariable}. The reason that it's such an intense syntax is that they
want to avoid it being something you would normally use, which would make it
unnecessarily difficult to do so. In our case, the console output would be as follows:

Let's learn JavaScript

As you can see, the language variable gets replaced with its value: JavaScript.

Escape characters
Say we want to have double quotes, single quotes, and backticks in our string. We
would have a problem, as this cannot be done with just the ingredients we have now.
There is an elegant solution to this problem. There is a special character that can be
used to tell JavaScript, "do not take the next character as you normally would." This
is the escape character, a backslash.

In this example, the backslash can be used to ensure your interpreter doesn't see the
single or double quote marks and end either string too early:

let str = "Hello, what's your name? Is it \"Mike\"?";
console.log(str);
let str2 = 'Hello, what\'s your name? Is it "Mike"?';
console.log(str2);

This logs the following to the console:

Hello, what's your name? Is it "Mike"?
Hello, what's your name? Is it "Mike"?

Chapter 2

[23]

As you can see, both types of quote marks inside the strings have been logged
without throwing an error. This is because the backslash before the quote character
gives the quote character a different meaning. In this case, the meaning is that it
should be a literal character instead of an indicator to end the string.

The escape character has even more purposes. You can use it to create a line break
with \n, or to include a backslash character in the text with \\:

let str3 = "New \nline.";
let str4 = "I'm containing a backslash: \\!";
console.log(str3);
console.log(str4);

The output of these lines is as follows:

New
line.
I'm containing a backslash: \!

There are some more options, but we will leave them for now. Let's get back to
primitive data types by looking at the number type.

Number
The number data type is used to represent, well, numbers. In many languages, there
is a very clear difference between different types of numbers. The developers of
JavaScript decided to go for one data type for all these numbers: number. To be more
precise, they decided to go for a 64-bit floating-point number. This means that it can
store rather large numbers and both signed and unsigned numbers, numbers with
decimals, and more.

However, there are different kinds of numbers it can represent. First of all, integers,
for example: 4 or 89. But the number data type can also be used to represent
decimals, exponentials, octal, hexadecimal, and binary numbers. The following code
sample should speak for itself:

let intNr = 1;
let decNr = 1.5;
let expNr = 1.4e15;
let octNr = 0o10; //decimal version would be 8
let hexNr = 0x3E8; //decimal version would be 1000
let binNr = 0b101; //decimal version would be 5

JavaScript Essentials

[24]

You don't need to worry about these last three if you're not familiar with them. These
are just different ways to represent numbers that you may encounter in the broader
field of computer science. The takeaway here is that all the above numbers are of the
number data type. So integers are numbers, like these ones:

let intNr2 = 3434;
let intNr3 = -111;

And the floating points are numbers as well, like this one:

let decNr2 = 45.78;

And binary numbers are of the number data type as well, for example, this one:

let binNr2 = 0b100; //decimal version would be 4

We have just seen the number data type, which is very commonly used. But in some
special cases, you will need an even bigger number.

BigInt
The limits of the number data type are between 253-1 and -(253-1). In case you were to
need a bigger (or smaller) number, BigInt comes into play. A BigInt data type can be
recognized by the postfix n:

let bigNr = 90071992547409920n;

Let's see what happens when we start to do some calculations between our
previously made integer Number, intNr, and BigInt, bigNr:

let result = bigNr + intNr;

The output will be as follows:

Uncaught TypeError: Cannot mix BigInt and other types, use explicit
conversions

Uh-oh, a TypeError! It is very clear about what is going wrong. We cannot mix
BigInt with the Number data type to perform operations. This is something to keep
in mind for later when actually working with BigInt—you can only operate on
BigInt with other BigInts.

Chapter 2

[25]

Boolean
The Boolean data type can hold two values: true and false. There is nothing in
between. This Boolean is used a lot in code, especially expressions that evaluate to
a Boolean:

let bool1 = false;
let bool2 = true;

In the preceding example, you can see the options we have for the Boolean data
type. It is used for situations in which you want to store a true or a false value
(which can indicate on/off or yes/no). For example, whether an element is deleted:

let objectIsDeleted = false;

Or, whether the light is on or off:

let lightIsOn = true;

These variables suggest respectively that the specified object is not deleted, and that
the specific light is on.

Symbol
Symbol is a brand new data type introduced in ES6 (we mentioned ECMA Script 6,
or ES6, in Chapter 1, Getting Started with JavaScript). Symbol can be used when it is
important that variables are not equal, even though their value and type are the same
(in this case, they would both be of the symbol type). Compare the following string
declarations to the symbol declarations, all of equal value:

let str1 = "JavaScript is fun!";
let str2 = "JavaScript is fun!";
console.log("These two strings are the same:", str1 === str2);

let sym1 = Symbol("JavaScript is fun!");
let sym2 = Symbol("JavaScript is fun!");
console.log("These two Symbols are the same:", sym1 === sym2);

And the output:

These two strings are the same: true
These two Symbols are the same: false

JavaScript Essentials

[26]

In the first half, JavaScript concludes that the strings are the same. They have the
same value, and the same type. However, in the second part, each symbol is unique.
Therefore, although they contain the same string, they are not the same, and output
false when compared. These symbol data types can be very handy as properties of
objects, which we will see in Chapter 3, JavaScript Multiple Values.

Undefined
JavaScript is a very special language. It has a special data type for a variable that has
not been assigned a value. And this data type is undefined:

let unassigned;
console.log(unassigned);

The output here will be:

Undefined

We can also purposefully assign an undefined value. It is important you know that
it is possible, but it is even more important that you know that manually assigning
undefined is a bad practice:

let terribleThingToDo = undefined;

Alright, this can be done, but it is recommended to not do this. This is for a number
of reasons—for example, checking whether two variables are the same. If one
variable is undefined, and your own variable is manually set to undefined, they will
be considered equal. This is an issue because if you are checking for equality, you
would want to know whether two values are actually equal, not just that they are
both undefined. This way, someone's pet and their last name might be considered
equal, whereas they are actually both just empty values.

null
In the last example, we saw an issue that can be solved with a final primitive type,
null. null is a special value for saying that a variable is empty or has an unknown
value. This is case sensitive. You should use lowercase for null:

let empty = null;

Chapter 2

[27]

To solve the issue we encountered with setting a variable as undefined, note that if
you set it to null, you will not have the same problem. This is one of the reasons it is
better to assign null to a variable when you want to say it is empty and unknown at
first:

let terribleThingToDo = undefined;
let lastName;
console.log("Same undefined:", lastName === terribleThingToDo);

let betterOption = null;
console.log("Same null:", lastName === betterOption);

This outputs the following:

Same undefined: true
Same null: false

This shows that an automatically undefined variable, lastName, and a deliberately
undefined variable, terribleThingToDo, are considered equal, which is problematic.
On the other hand, lastName and betterOption, which was explicitly declared with a
value of null, are not equal.

Analyzing and modifying data types
We have seen the primitive data types. There are some built-in JavaScript methods
that will help us deal with common problems related to primitives. Built-in methods
are pieces of logic that can be used without having to write JavaScript logic yourself.

There are many of these built-in methods, and the ones you will be meeting in this
chapter are just the first few you will encounter.

We've seen one built-in method already: console.log().

JavaScript Essentials

[28]

Working out the type of a variable
Especially with null and undefined, it can be hard to determine what kind of data
type you are dealing with. Let's have a look at typeof. This returns the type of the
variable. You can check the type of a variable by entering typeof, then either a space
followed by the variable in question, or the variable in question in brackets:

testVariable = 1;
variableTypeTest1 = typeof testVariable;
variableTypeTest2 = typeof(testVariable);
console.log(variableTypeTest1);
console.log(variableTypeTest2);

As you might assume, both methods will output number. Brackets aren't required
because technically, typeof is an operator, not a method, unlike console.log. But,
sometimes you may find that using brackets makes your code easier to read. Here
you can see it in action:

let str = "Hello";
let nr = 7;
let bigNr = 12345678901234n;
let bool = true;
let sym = Symbol("unique");
let undef = undefined;
let unknown = null;

console.log("str", typeof str);
console.log("nr", typeof nr);
console.log("bigNr", typeof bigNr);
console.log("bool", typeof bool);
console.log("sym", typeof sym);
console.log("undef", typeof undef);
console.log("unknown", typeof unknown);

Here, in the same console.log() print command, we are printing the name of each
variable (as a string, declared with double quotes), then its type (using typeof). This
will produce the following output:

str string
nr number
bigNr bigint
bool boolean

Chapter 2

[29]

sym symbol
undef undefined
unknown object

There is an odd one out, and that is the null type. In the output you can see that
typeof null returns object, while in fact, null truly is a primitive and not an object.
This is a bug that has been there since forever and now cannot be removed due to
backward compatibility problems. Don't worry about this bug, as it won't affect our
programs—just be aware of it, since it will go nowhere anytime soon, and it has the
potential to break applications.

Converting data types
The variables in JavaScript can change types. Sometimes JavaScript does this
automatically. What do you think the result of running the following code snippet
will be?

let nr1 = 2;
let nr2 = "2";
console.log(nr1 * nr2);

We try to multiply a variable of type Number with a variable of type String.
JavaScript does not just throw an error (as many languages would), but first tries to
convert the string value to a number. If that can be done, it can execute without any
problem as if two numbers were declared. In this case, console.log() will write 4 to
the console.

But this is dangerous! Guess what this code snippet does:

let nr1 = 2;
let nr2 = "2";
console.log(nr1 + nr2);

This one will log 22. The plus sign can be used to concatenate strings. Therefore,
instead of converting a string to a number, it is converting a number to a string in
this example, and clubbing the two strings together—"2" and "2" make "22". Luckily,
we do not need to rely on JavaScript's behavior when converting data types. There
are built-in functions we can use to convert the data type of our variable.

There are three conversion methods: String(), Number(), and Boolean(). The first
one converts a variable to type String. It pretty much takes any value, including
undefined and null, and puts quotes around it.

JavaScript Essentials

[30]

The second one tries to convert a variable to a number. If that cannot be done
logically, it will change the value into NaN (not a number). Boolean() converts a
variable to a Boolean. This will be true for everything except for null, undefined,
0 (number), an empty string, and NaN. Let's see them in action:

let nrToStr = 6;
nrToStr = String(nrToStr);
console.log(nrToStr, typeof nrToStr);

let strToNr = "12";
strToNr = Number(strToNr);
console.log(strToNr, typeof strToNr);

let strToBool = "any string will return true";
strToBool = Boolean(strToBool);
console.log(strToBool, typeof strToBool);

This will log the following:

6 string
12 number
true boolean

This might seem pretty straightforward, but not all of the options are equally
obvious. These, for example, are not what you might think:

let nullToNr = null;
nullToNr = Number(nullToNr);
console.log("null", nullToNr, typeof nullToNr);

let strToNr = "";
strToNr = Number(strToNr);
console.log("empty string", strToNr, typeof strToNr);

The preceding code snippet will log the following to the console:

null 0 number
empty string 0 number

As you can see, an empty string and null will both result in the number 0. This is
a choice that the makers of JavaScript made, which you will have to know—it can
come in handy at times when you want to convert a string to 0 when it is empty
or null.

Chapter 2

[31]

Next, enter the following snippet:

let strToNr2 = "hello";
strToNr2 = Number(strToNr2);
console.log(strToNr2, typeof strToNr2);

The result that will be logged to the console is:

NaN number

Here, we can see that anything that can't be interpreted as a number by simply
removing the quotes will evaluate as NaN (not a number).

Let's continue with the following code:

let strToBool2 = "false";
strToBool2 = Boolean(strToBool2);
console.log(strToBool2, typeof strToBool2);

let strToBool = "";
strToBool = Boolean(strToBool);
console.log(strToBool, typeof strToBool);

Finally, this one will log the following:

true boolean
false boolean

This output shows that any string will return true when converted to a Boolean,
even the string "false"! Only an empty string, null, and undefined will lead to a
Boolean value of false.

Let's tease your brain a little bit more. What do you think this one will log?

let nr1 = 2;
let nr2 = "2";
console.log(nr1 + Number(nr2));

This one logs 4! The string gets converted to a number before it executes the
plus operation, and therefore it is a mathematical operation and not a string
concatenation. In the next sections of this chapter, we will discuss operators in
more depth.

JavaScript Essentials

[32]

Practice exercise 2.1
What are the types of these variables listed below? Verify this with typeof and
output the result to the console:

let str1 = 'Laurence';
let str2 = "Svekis";
let val1 = undefined;
let val2 = null;
let myNum = 1000;

Operators
After seeing quite a few data types and some ways to convert them, it is time for the
next major building block: operators. These come in handy whenever we want to
work with the variables, modify them, perform calculations on them, and compare
them. They are called operators because we use them to operate on our variables.

Arithmetic operators
Arithmetic operators can be used to perform operations with numbers. Most of these
operations will feel very natural to you because they are the basic mathematics you
will have come across earlier in life already.

Addition
Addition in JavaScript is very simple, we have seen it already. We use + for this
operation:

let nr1 = 12;
let nr2 = 14;
let result1 = nr1 + nr2;

However, this operator can also come in very handy for concatenating strings. Note
the added space after "Hello" to ensure the end result contains space characters:

let str1 = "Hello ";
let str2 = "addition";
let result2 = str1 + str2;

Chapter 2

[33]

The output of printing result1 and result2 will be as follows:

26
Hello addition

As you can see, adding numbers and strings lead to different results. If we add two
different strings, it will concatenate them into a single string.

Practice exercise 2.2
Create a variable for your name, another one for your age, and another one for
whether you can code JavaScript or not.

Log to the console the following sentence, where name, age and true/false are
variables:

Hello, my name is Maaike, I am 29 years old and I can code JavaScript:
true.

Subtraction
Subtraction works as we would expect it as well. We use - for this operation. What
do you think gets stored in the variable in this second example?

let nr1 = 20;
let nr2 = 4;
let str1 = "Hi";
let nr3 = 3;
let result1 = nr1 - nr2;
let result2 = str1 - nr3;
console.log(result1, result2);

The output is as follows:

16 NaN

The first result is 16. And the second result is more interesting. It gives NaN, not an
error, but just simply the conclusion that a word and a number subtracted is not a
number. Thanks for not crashing, JavaScript!

Multiplication
We can multiply two numeric values with the * character. Unlike some other
languages, we cannot successfully multiply a number and a string in JavaScript.

JavaScript Essentials

[34]

The result of multiplying a numeric and a non-numeric value is NaN:

let nr1 = 15;
let nr2 = 10;
let str1 = "Hi";
let nr3 = 3;
let result1 = nr1 * nr2;
let result2 = str1 * nr3;
console.log(result1, result2);

Output:

150 NaN

Division
Another straightforward operator is division. We can divide two numbers with the /
character:

let nr1 = 30;
let nr2 = 5;
let result1 = nr1 / nr2;
console.log(result1);

The output is as follows:

6

Exponentiation
Exponentiation means raising a certain base number to the power of the exponent,
for example, xy. This can be read as x to the power of y. It means that we will
multiply x by itself y number of times. Here is an example of how to do this in
JavaScript—we use ** for this operator:

let nr1 = 2;
let nr2 = 3;
let result1 = nr1 ** nr2;
console.log(result1);

Chapter 2

[35]

We get the following output:

8

The result of this operation is 2 to the power of 3 (2 * 2 * 2), which is 8. We're going
to avoid going into a mathematics lesson here, but we can also find the root of a
number by using fractional exponents: for example, the square root of a value is
the same as raising it to the power of 0.5.

Modulus
This is one that often requires a little explanation. Modulus is the operation in which
you determine how much is left after dividing a number by another number in its
entirety. The amount of times the number can fit in the other number does not matter
here. The outcome will be the remainder, or what is left over. The character we use
for this operation is the % character. Here are some examples:

let nr1 = 10;
let nr2 = 3;
let result1 = nr1 % nr2;
console.log(`${nr1} % ${nr2} = ${result1}`);

let nr3 = 8;
let nr4 = 2;
let result2 = nr3 % nr4;
console.log(`${nr3} % ${nr4} = ${result2}`);

let nr5 = 15;
let nr6 = 4;
let result3 = nr5 % nr6;
console.log(`${nr5} % ${nr6} = ${result3}`);

And the output:

10 % 3 = 1
8 % 2 = 0
15 % 4 = 3

The first one is 10 % 3, where 3 fits 3 times into 10, and then 1 is left. The second one
is 8 % 2. This results in 0, because 2 can fit 4 times into 8 without having anything
left. The last one is 15 % 4, where 4 fits 3 times into 15. And then we have 3 left as
a result.

JavaScript Essentials

[36]

This is something that would happen in your head automatically if I asked you
to add 125 minutes to the current time. You will probably do two things: integer
division to determine how many whole hours fit into 125 minutes, and then 125
modulo 60 (in JavaScript terms, 125 % 60) to conclude that you'll have to add 5 more
minutes to the current time. Say our current time is 09:59, you will probably start by
adding 2 hours, and get to 11:59, and then add 5 minutes, and then you will perform
another modulus operation with 59 and 5, adding 1 more hour to the total and
having 4 minutes left: 12:04.

Unary operators: increment and decrement
The last two operators of our arithmetic operator section are probably new to
you, if you are new to programming (or only familiar with another programming
language). These are the increment and decrement operators. A term we use here
is operand. Operands are subject to the operator. So, if we say x + y, x and y are
operands.

We only need one operand for these operators, and therefore we also call them
unary operators. If we see x++, we can read this as x = x + 1. The same is true for the
decrement operators: x-- can be read as x = x – 1:

let nr1 = 4;
nr1++;
console.log(nr1);

let nr2 = 4;
nr2--;
console.log(nr2);

The output is as follows:

5
3

Prefix and postfix operators
We can have the increment operator after the operand (x++), in which case we call
this the postfix unary operator. We can also have it before (++x), which is the prefix
unary operator. This does something different though—the next few lines might be
complicated, so do not worry if you need to read it a few times and have a good look
at the examples here.

Chapter 2

[37]

The postfix gets executed after sending the variable through, and then after that, the
operation gets executed. In the following example, nr gets incremented by 1 after
logging. So the first logging statement is still logging the old value because it has not
been updated yet. It has been updated for the second log statement:

let nr = 2;
console.log(nr++);
console.log(nr);

The output is as follows:

2
3

The prefix gets executed before sending the variable through, and often this is the one
you will need. Have a look at the following example:

let nr = 2;
console.log(++nr);

We get the following output:

3

Alright, if you can figure out what the next code snippets logs to the console, you
should really have a handle on it:

let nr1 = 4;
let nr2 = 5;
let nr3 = 2;
console.log(nr1++ + ++nr2 * nr3++);

It outputs 16. It will do the multiplication first, according to the basic mathematical
order of operations. For multiplying, it uses 6 (prefix, so 5 is incremented before
multiplying) and 2 (postfix, so 2 is only incremented after execution, meaning it
won't affect our current calculation). This comes down to 12. And then nr1 is a
postfix operator, so this one will execute after the addition. Therefore, it will add 12
to 4 and become 16.

Combining the operators
These operators can be combined, and it works just as it does in math. They get
executed in a certain order, and not necessarily from left to right. This is due to a
phenomenon called operator precedence.

JavaScript Essentials

[38]

There is one more thing to take into account here, and that is grouping. You can
group using (and). The operations between the parentheses have the highest
precedence. After that, the order of the operations takes place based on the type of
operation (highest precedence first) and if they are of equal precedence, they take
place from left to right:

Name Symbol Example

Grouping (...) (x + y)

Exponentiation ** x ** y

Prefix increment and decrement --, ++ --x, ++y

Multiplication, division, modulus *, /, % x * y, x / y, x % y

Addition and subtraction +, - x + y, x - y

Practice exercise 2.3
Write some code to calculate the hypotenuse of a triangle using the Pythagorean
theorem when given the values of the other two sides. The theorem specifies that the
relation between the sides of a right-angled triangle is a2 + b2 = c2.

You can use prompt() to get the value for a and b. Write code to get the value from
the user for a and b. Then square the values of both a and b before adding them
together and finding the square root. Print your answer to the console.

Assignment operators
We have seen one assignment operator already when we were assigning values to
variables. The character for this basic assignment operation is =. There are a few
others available. Every binary arithmetic operator has a corresponding assignment
operator to write a shorter piece of code. For example, x += 5 means x = x + 5, and
x **= 3 means x = x ** 3 (x to the power of 3).

The Pythagorean theorem only applies to right-angled triangles.
The sides connected to the 90-degree angle are called the adjacent
and opposite sides, represented by a and b in the formula. The
longest side, not connected to the 90-degree angle, is called the
hypotenuse, represented by c.

Chapter 2

[39]

In this first example we declare a variable x, and set it to 2 as an initial value:

let x = 2;
x += 2;

After this assignment operation, the value of x becomes 4, because x += 2 is the same
as x = x + 2:

In the next assignment operation, we will subtract 2:

x -= 2;

So, after this operation the value of x becomes 2 again (x = x – 2). In the next
operation, we are going to multiply the value by 6:

x *= 6;

When this line has been executed, the value of x is no longer 2, but becomes
12 (x = x * 6). In the next line, we are going to use an assignment operator to perform
a division:

x /= 3;

After dividing x by 3, the new value becomes 4. The next assignment operator we
will use is exponentiation:

x **= 2;

The value of x becomes 16, because the old value was 4, and 4 to the power of 2
equals 16 (4 * 4). The last assignment operator we will talk about is the modulus
assignment operator:

x %= 3;

After this assignment operation, the value of x is 1, because 3 can fit 5 times into 16
and then leaves 1.

Practice exercise 2.4
Create variables for three numbers: a, b, and c. Update these variables with the
following actions using the assignment operators:

• Add b to a
• Divide a by c

JavaScript Essentials

[40]

• Replace the value of c with the modulus of c and b
• Print all three numbers to the console

Comparison operators
Comparison operators are different from the operators we have seen so far. The
outcome of the comparison operators is always a Boolean, true, or false.

Equal
There are a few equality operators that determine whether two values are equal.
They come in two flavors: equal value only, or equal value and data type. The first
one returns true when the values are equal, even though the type is different, while
the second returns true only when the value and the type are the same:

let x = 5;
let y = "5";
console.log(x == y);

The double equals operator, two equal signs, means that it will only check for equal
value and not for data type. Both have the value 5, so it will log true to the console.
This type of equality is sometimes called loose equality.

The triple equals operator, written as three equal signs, means that it will evaluate
both the value and the data type to determine whether both sides are equal or not.
They both need to be equal in order for this statement to be true, but they are not
and therefore the following statement outputs false:

console.log(x === y);

This is sometimes also called strict equality. This triple equals operator is the one
you should most commonly be using when you need to check for equality, as only
with this one can you be sure that both variables are really equal.

Not equal
Not equal is very similar to equal, except it does the opposite—it returns true when
two variables are not equal, and false when they are equal. We use the exclamation
mark for not equal:

let x = 5;
let y = "5";
console.log(x != y);

Chapter 2

[41]

This will log false to the console. If you are wondering what is going on here, take
a look again at the double and triple equals operators, because it is the same here.
However, when there is only one equals sign in a not-equal operator, it is comparing
loosely for non-equality. Therefore, it concludes that they are equal and therefore not
equal should result in false. The one with two equals signs is checking for strict non-
equality:

console.log(x !== y);

This will conclude that since x and y have different data types, they are not the
same, and will log true to the console.

Greater than and smaller than
The greater than operator returns true if the left-hand side is greater than the right-
hand side of the operation. We use the > character for this. We also have a greater
than or equal to operator, >=, which returns true if the left-hand side is greater than
or equal to the right-hand side.

let x = 5;
let y = 6;
console.log(y > x);

This one will log true, because y is greater than x.

console.log(x > y);

Since x is not greater than y, this one will log false.

console.log(y > y);

y is not greater than y, so this one will log false.

console.log(y >= y);

This last one is looking at whether y is greater than or equal to y, and since it is equal
to itself, it will log true.

It might not surprise you that we also have smaller than (<) and smaller than or equal
to operators (<=). Let's have a look at the smaller than operator, as it is very similar to
the previous ones.

console.log(y < x);

JavaScript Essentials

[42]

This first one will be false, since y is not smaller than x.

console.log(x < y);

So, this second one will log true, because x is smaller than y.

console.log(y < y);

y is not smaller than y, so this one will log false.

console.log(y <= y);

This last one looks at whether y is smaller than or equal to y. It is equal to y, so it will
log true.

Logical operators
Whenever you want to check two conditions in one, or you need to negate a
condition, the logical operators come in handy. You can use and, or, and not.

And
The first one we will have a look at is and. If you want to check whether x is greater
than y and y is greater than z, you would need to be able to combine two expressions.
This can be done with the && operator. It will only return true if both expressions are
true:

let x = 1;
let y = 2;
let z = 3;

With these variables in mind, we are going to have a look at the logical operators:

console.log(x < y && y < z);

This will log true, you can read it like this: if x is smaller than y and y is smaller
than z, it will log true. That is the case, so it will log true. The next example will log
false:

console.log(x > y && y < z);

Since x is not greater than y, one part of the expression is not true, and therefore
it will result in false.

Chapter 2

[43]

Or
If you want to get true if either one of the expressions is true, you use or. The
operator for this is ||. These pipes are used to see if either one of these two is true,
in which case the whole expression evaluates to true. Let's have a look at the or
operator in action:

console.log(x > y || y < z);

This will result in true, whereas it was false with &&. This is because only one of
the two sides needs to be true in order for the whole expression to evaluate to true.
This is the case because y is smaller than z.

When both sides are false, it will log false, which is the case in the next example:

console.log(x > y || y > z);

Not
In some cases you will have to negate a Boolean. This will make it the opposite value.
It can be done with the exclamation mark, which reads as not:

let x = false;
console.log(!x);

This will log true, since it will simply flip the value of the Boolean. You can also
negate an expression that evaluates to a Boolean, but you would have to make sure
that the expression gets evaluated first by grouping it.

let x = 1;
let y = 2;
console.log(!(x < y));

x is smaller than y, so the expression evaluates to true. But, it gets negated due to the
exclamation mark and prints false to the console.

Chapter project

Miles-to-kilometers converter
Create a variable that contains a value in miles, convert it to kilometers, and log the
value in kilometers in the following format:

The distance of 130 kms is equal to 209.2142 miles

JavaScript Essentials

[44]

For reference, 1 mile equals 1.60934 kilometers.

BMI calculator
Set values for height in inches and weight in pounds, then convert the values to
centimeters and kilos, outputting the results to the console:

• 1 inch is equal to 2.54 cm
• 2.2046 pounds is equal to 1 kilo

Output the results. Then, calculate and log the BMI: this is equal to weight (in kilos)
divided by squared height (in meters). Output the results to the console.

Self-check quiz
1. What data type is the following variable?

const c = "5";

2. What data type is the following variable?
const c = 91;

3. Which one is generally better, line 1 or line 2?
let empty1 = undefined; //line 1
let empty2 = null; //line 2

4. What is the console output for the following?
let a = "Hello";
a = "world";
console.log(a);

5. What will be logged to the console?
let a = "world";
let b = `Hello ${a}!`;
console.log(b);

6. What is the value of a?
let a = "Hello";
a = prompt("world");
console.log(a);

Chapter 2

[45]

7. What is the value of b output to the console?
let a = 5;
let b = 70;
let c = "5";
b++;
console.log(b);

8. What is the value of result?
let result = 3 + 4 * 2 / 8;

9. What is the value of total and total2?
let firstNum = 5;
let secondNum = 10;
firstNum++;
secondNum--;
let total = ++firstNum + secondNum;
console.log(total);
let total2 = 500 + 100 / 5 + total--;
console.log(total2);

10. What is logged to the console here?

const a = 5;
const b = 10;
console.log(a > 0 && b > 0);
console.log(a == 5 && b == 4);
console.log(true ||false);
console.log(a == 3 || b == 10);
console.log(a == 3 || b == 7);

Summary
In this chapter, we dealt with the first two programming building blocks: variables
and operators. Variables are special fields that have a name and contain values. We
declare a variable by using one of the special variable-defining words: let, var, or
const. Variables enable us to make our scripts dynamic, store values, access them
later, and change them later. We discussed some primitive data types, including
strings, numbers, Booleans, and Symbols, as well as more abstract types such as
undefined and null. You learned how to determine the type of a variable using the
typeof word. And you saw how you can convert the data type by using the built-in
JavaScript methods Number(), String(), and Boolean().

JavaScript Essentials

[46]

Then we moved on and discussed operators. Operators enable us to work with our
variables. They can be used to perform calculations, compare variables, and more.
The operators we discussed included arithmetic operators, assignment operators,
comparison operators, and logical operators.

After this chapter, you are ready to deal with more complex data types, such as
arrays and objects. We'll cover these in the next chapter.

[47]

3
JavaScript Multiple Values

The basic data types have been dealt with in the previous chapter. Now it's time
to look at a slightly more complicated topic: arrays and objects. In the previous
chapter, you saw variables that held just a single value. To allow for more complex
programming, objects and arrays can contain multiple values.

You can look at objects as a collection of properties and methods. Properties can
be thought of as variables. They can be simple data structures such as numbers
and strings, but also other objects. Methods perform actions; they contain a certain
number of lines of code that will be executed when the method gets called. We'll
explain methods in more detail later in this book and focus on properties for now.
An example of an object can be a real-life object, for example, a dog. It has properties,
such as name, weight, color, and breed.

We will also discuss arrays. An array is a type of object, which allows you to store
multiple values. They are a bit like lists. So, you could have an array of items to buy
at the grocery store, which might contain the following values: apples, eggs, and
bread. This list would take the form of a single variable, holding multiple values.

Along the way, we will cover the following topics:

• Arrays and their properties
• Array methods
• Multidimensional arrays
• Objects in JavaScript
• Working with objects and arrays

JavaScript Multiple Values

[48]

Let's start with arrays.

Arrays and their properties
Arrays are lists of values. These values can be of all data types and one array can
even contain different data types. It is often very useful to store multiple values
inside one variable; for example, a list of students, groceries, or test scores. Once
you start writing scripts, you'll find yourself needing to write arrays very often; for
example, when you want to keep track of all the user input, or when you want to
have a list of options to present to the user.

Creating arrays
You might be convinced by now that arrays are great, so let's see how we can make
them. There is actually a right way and a wrong way to do it. Here are both. Which
one do you think is the right one?

arr1 = new Array("purple", "green", "yellow");
arr2 = ["black", "orange", "pink"];

If you guessed the second option, using square brackets, you are right. This is the
best and most readable way to create a new array. On the other hand, the first option
can do unexpected things. Look at both lines of code here. What do you think they
will do?

arr3 = new Array(10);
arr4 = [10];

Probably, you sense that something is up here. They do not both create an array with
one value, 10. The second one, arr4, does. The first option creates an array with 10
undefined values. If we log the values like this:

console.log(arr3);
console.log(arr4);

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 3

[49]

Here is what it logs:

[<10 empty items>]
[10]

Thanks, JavaScript! That was very helpful. So, unless that is what you need to do,
please use the square brackets!

As I already mentioned, we can have mixed arrays and arrays can hold any type of
variable. The values of the array won't be converted to a single data type or anything
like that. JavaScript simply stores all the variables with their own data type and
value in the array:

let arr = ["hi there", 5, true];
console.log(typeof arr[0]);
console.log(typeof arr[1]);
console.log(typeof arr[2]);

This will output to the console:

string
number
boolean

The last array fun fact we will go over here is what happens if you define an array
using const. You can change the values of a constant array, but you cannot change
the array itself. Here is a piece of code to demonstrate:

const arr = ["hi there"];
arr[0] = "new value";
console.log(arr[0]);

arr = ["nope, now you are overwriting the array"];

The new value for the first element of the array is going fine, but you cannot assign
a new value to the full array. Here is what it will output:

new value
TypeError: Assignment to constant variable.

JavaScript Multiple Values

[50]

Accessing elements
This beautiful array we just made would become much more powerful if we
could access its elements. We can do this by referencing the array's index. This is
something we did not specify when we created the array, and we did not need to
either. JavaScript assigns an index to every value of the array. The first value is
assigned the position of 0, the second 1, the third 2, and so on. If we want to call a
specific value based on its position in the array, we can use the name of our array,
add square brackets to the end, and put the index we want to access between the
square brackets, like this:

cars = ["Toyota", "Renault", "Volkswagen"];
console.log(cars[0]);

This log statement will write Toyota to the console because we called for the position
0 of the array, which outputs the first value in the list.

console.log(cars[1]);

Calling index position 1 is giving us the second element in the array, which is
Renault. This will be logged to the console.

console.log(cars[2]);

The third element in our array has index 2, so this one will log Volkswagen. What do
you think will happen if we use a negative index or an index that is higher than the
number of values we get?

console.log(cars[3]);
console.log(cars[-1]);

We didn't assign a value to the negative or non-existent index, so when we ask for
it, the value is undefined. As such, the log output will be undefined. JavaScript does
not throw an error because of this.

Overwriting elements
The elements in an array can be overwritten. This can be done by accessing a certain
element using the index and assigning a new value:

cars[0] = "Tesla";
console.log(cars[0]);

Chapter 3

[51]

The output of this log is Tesla because it has overwritten the old value, Toyota. If we
output the whole array:

console.log(cars);

It will output the following:

['Tesla', 'Renault', 'Volkswagen']

What happens if you try to overwrite an element that does not exist?

cars[3] = "Kia";

Or even a negative index?

cars[-1] = "Fiat";

Let's see what happens when we try to write the values to the console:

console.log(cars[3]);
console.log(cars[-1]);

And the output:

Kia
Fiat

Ha! They suddenly exist. How is that you may wonder? We will discuss this in the
next section. For now, just remember that this is not the right way to add values to
the array. We will discuss the right way when we explain arrays in the Array methods
section.

Built-in length property
Arrays have a very useful built-in property: length. This will return the number of
values that the array has:

colors = ["black", "orange", "pink"]
booleans = [true, false, false, true];
emptyArray = [];

console.log("Length of colors:", colors.length);
console.log("Length of booleans:", booleans.length);
console.log("Length of empty array:", emptyArray.length);

JavaScript Multiple Values

[52]

The first console.log call returns 3, indicating that the colors array contains 3 values.
The second one returns 4, and the last one is an empty array with a length of 0:

Length of colors: 3
Length of booleans: 4
Length of empty array: 0

So, be aware that the length is one higher than the maximum index because the index
of the array starts at 0, but when determining the length, we look at the number of
elements and there are four separate elements. This is why the maximum index is 3
when the length is 4. Hence, the positional value of the last element in the array will
be one fewer than the total number of elements.

Take a moment and try to figure out how you can use the length to access the last
element of the array:

lastElement = colors[colors.length - 1];

You get the highest index by subtracting 1 from the length because, as you know,
arrays are zero-indexed. So, the positional value of the last element in the array will
be one fewer than the total number of elements.

So, this might seem pretty straightforward. Remember the non-existent index
position we called in the previous section? Let's see what happens in this example:

numbers = [12, 24, 36];
numbers[5] = 48;
console.log(numbers.length);

The length of the array is only counting the integer numbers starting from 0 up to
the highest filled index. If there are elements in the middle of the sequence that do
not have a value, they will still get counted. In this case, the length becomes 6. If we
log the array, we can see why:

console.log("numbers", numbers);

The output will be as follows:

numbers [12, 24, 36, <2 empty items>, 48]

Because we added an element, 48, at index 5, it also created 2 elements at index
positions 3 and 4 containing empty values. For now, let's have a look at array
methods and find out the right way to add to an array.

Chapter 3

[53]

Practice exercise 3.1
1. Create an array to use as your shopping list with 3 items: "Milk," "Bread," and

"Apples."
2. Check your list length in the console.
3. Update "Bread" to "Bananas."
4. Output your entire list to the console.

Array methods
We have just seen the built-in length property. We also have a few built-in methods.
Methods are functions on a certain object. Instead of holding a value, like properties,
they perform actions. We will cover functions in-depth in Chapter 6, Functions. For
now, all you need to know is that you can call methods and functions, and when
you do, some code that is specified inside that function gets executed.

We just accidentally saw we could add elements using new indices. This is not
the proper way to do it as it is easy to make mistakes and accidentally overwrite
a certain value or skip a certain index. The right way is to do this with a special
method. Similarly, we can also delete elements and sort the elements in the array.

Adding and replacing elements
We can add elements with the push() method:

favoriteFruits = ["grapefruit", "orange", "lemon"];
favoriteFruits.push("tangerine");

The value gets added to the end of the array. The push method returns the new
length of the array, four in this case. You can store this length in a variable like this:

let lengthOfFavoriteFruits = favoriteFruits.push("lime");

The value 5 gets stored in the lengthOfFavoriteFruits variable. If we log our array,
favoriteFruits, like this:

console.log(favoriteFruits);

Here is the new array:

['grapefruit', 'orange', 'lemon', 'tangerine', 'lime']

JavaScript Multiple Values

[54]

This was easy right? But what if you would want to add elements at a certain index?
You can use the splice() method. This one is slightly more difficult:

let arrOfShapes = ["circle", "triangle", "rectangle", "pentagon"];
arrOfShapes.splice(2, 0, "square", "trapezoid");
console.log(arrOfShapes);

After this, the output containing the array is as follows:

[
 'circle',
 'triangle',
 'square',
 'trapezoid',
 'rectangle',
 'pentagon'
]

First, let's point out the different layouts of this output. This might depend on the
interpreter you are using, but at some point, it will decide it is too long for a single
line and apply an automatic format to the array to make it more readable. It doesn't
change the value of the array; it is just a different representation of the same values
were they to be on a single line.

As you can see, the square and trapezoid get inserted on index 2. The rest of the
array is shifting to the right. The splice() method takes multiple parameters. The
first parameter, 2 in our case, is the index of the array on which we want to start
inserting. The second parameter, 0 in our case, is the number of elements we want to
delete starting at our previously defined starting index. The parameters after these
first two, square and trapezoid in our case, are whatever should be inserted starting
at the start index.

So, had we said this instead:

arrOfShapes.splice(2, 2, "square", "trapezoid");
console.log(arrOfShapes);

It would have replaced the elements rectangle and pentagon and added square and
trapezoid in their place, as follows:

['circle', 'triangle', 'square', 'trapezoid']

Chapter 3

[55]

If you were to increase the second parameter to a number higher than our array, it
would not affect the result as JavaScript would simply stop as soon as it runs out of
values to delete. Try the following code:

arrOfShapes.splice(2, 12, "square", "trapezoid");
console.log(arrOfShapes);

This would also have had this output:

['circle', 'triangle', 'square', 'trapezoid']

You can also add another array to your array. This can be done with the concat()
method. This way, you can create a new array that consists of a concatenation of both
arrays. The elements of the first array will be first, and the elements of the argument
of concat() will be concatenated to the end:

let arr5 = [1, 2, 3];
let arr6 = [4, 5, 6];
let arr7 = arr5.concat(arr6);
console.log(arr7);

And here is the output:

[1, 2, 3, 4, 5, 6]

This concat() method can do even more! We can use it to add values as well. We can
add a single value, or we can comma-separate multiple values:

let arr8 = arr7.concat(7, 8, 9);
console.log(arr8);

The new value of the array will be as follows:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Deleting elements
There are several ways in which you can delete elements from an array. Removing
the last element is done with pop():

arr8.pop();

JavaScript Multiple Values

[56]

Logging the array after executing pop() results in this:

[1, 2, 3, 4, 5, 6, 7, 8]

Deleting the first element can be done with shift(). This causes all other indices to
be reduced by one:

arr8.shift();

The new array will be:

[2, 3, 4, 5, 6, 7, 8]

Remember splice()? This is a very special method because we can also use it to
delete values. We specify the index from where we want to start deleting, and then
the number of elements we want to delete.

arr8.splice(1, 3);

After this, the value of the array is as follows:

[2, 6, 7, 8]

As you can see, 3 elements starting from the second positional index have been
deleted. The values 3, 4, and 5 are gone. If you do not wish to change any of the later
indices, you can also use the operator delete. This is not a method, but you can use it
to change the value of a certain position of the array to undefined:

delete arr8[0];

The array then becomes:

[<1 empty item>, 6, 7, 8]

This is useful when you are relying on index or length for some reason. For example,
if you are keeping user input, and you want to determine the number of user inputs
based on an array that the user is pushing to, deleting would decrease the number of
inputs, whereas that might not be what you would want.

Finding elements
If you want to check whether a value is present in an array, you can use the find()
method. What will go in the find() method is somewhat different. It is actually a
function. This function will be executed on every element in the array until it finds
a match, and if it does not, then it will return undefined.

Chapter 3

[57]

Do not worry if this is too difficult for now; it will become clear soon enough. We
are writing the function in two different ways in the following code snippet. They
are actually doing the same, except that the first one is checking for an element
being equal to 6, and the second for an element being equal to 10:

arr8 = [2, 6, 7, 8];
let findValue = arr8.find(function(e) { return e === 6});
let findValue2 = arr8.find(e => e === 10);
console.log(findValue, findValue2);

The log statement will log 6 and undefined because it can find an element that
matches for 6, but not one that matches for 10.

A function can take a certain input. In this case, it takes the element of the array as
an input. When the element of the array equals 6 (findValue) or 10 (findValue2), it
returns the element. In Chapter 6, Functions, we will cover functions in much more
detail. It is a lot for a beginner to take in, so you can review this a bit later if it is
unclear for now.

Often, you do not only want to find the element, but you want to know what
position it is on. This can be done with the indexOf() method. This method returns
the index on which the value is found. If a value occurs in an array more than once,
it will return the first occurrence. If the value is not found, it will return -1:

arr8 = [2, 6, 7, 8];
let findIndex = arr8.indexOf(6);
let findIndex2 = arr8.indexOf(10);
console.log(findIndex, findIndex2);

So, the first one will return 1 since that is the index position of 6 in the array. The
second one will return -1 because the array does not contain 10.

If you want to find the next occurrence of the specified number, you can add a
second argument to indexOf(), specifying from which position it should start
searching:

arr8 = [2, 6, 7, 8];
let findIndex3 = arr8.indexOf(6, 2);

In this case, the value of findIndex3 will be -1, because 6 cannot be found starting
from index 2.

JavaScript Multiple Values

[58]

The last occurrence can also be found. This is done with the lastIndexOf() method:

let animals = ["dog", "horse", "cat", "platypus", "dog"];
let lastDog = animals.lastIndexOf("dog");

The value of lastDog will be 4 because that is the last occurrence of dog in the array.

Sorting
There is also a built-in method for sorting arrays. It sorts numbers from small to
high and strings A-Z. You can call sort() on an array and the order of the values of
the array will change to a sorted order:

let names = ["James", "Alicia", "Fatiha", "Maria", "Bert"];
names.sort();

The value of names after sorting is as follows:

['Alicia', 'Bert', 'Fatiha', 'James', 'Maria']

As you can see, the array is now sorted alphabetically. For numbers, it is sorting
them in ascending order, as you can see in the following code snippet:

let ages = [18, 72, 33, 56, 40];
ages.sort();

After executing this sort() method, the value of ages is:

[18, 33, 40, 56, 72]

Reversing
The elements of the array can be reversed by calling the built-in method, reverse(),
on an array. It puts the last element first, and the first element last. It does not matter
whether the array is sorted or not; it just reverses the order.

The value of names before reversing is as follows:

['Alicia', 'Bert', 'Fatiha', 'James', 'Maria']

Now we are going to call the reverse() method:

names.reverse();

Chapter 3

[59]

The new order will be:

['Maria', 'James', 'Fatiha', 'Bert', 'Alicia']

Practice exercise 3.2
1. Create an empty array to use as a shopping list.
2. Add Milk, Bread, and Apples to your list.
3. Update "Bread" with Bananas and Eggs.
4. Remove the last item from the array and output it into the console.
5. Sort the list alphabetically.
6. Find and output the index value of Milk.
7. After Bananas, add Carrots and Lettuce.
8. Create a new list containing Juice and Pop.
9. Combine both lists, adding the new list twice to the end of the first list.
10. Get the last index value of Pop and output it to the console.
11. Your final list should look like this:

["Bananas", "Carrots", "Lettuce", "Eggs", "Milk", "Juice",
"Pop", "Juice", "Pop"]

Multidimensional arrays
Earlier, we established already that arrays can contain any data type. This means that
arrays can also contain other arrays (which, in turn, can contain… other arrays!). This
is called a multidimensional array. It sounds complicated, but it is just an array of
arrays: a list of lists:

let someValues1 = [1, 2, 3];
let someValues2 = [4, 5, 6];
let someValues3 = [7, 8, 9];

let arrOfArrays = [someValues1, someValues2, someValues3];

So, we can create an array of already existing arrays. This is called a two-dimensional
array. We can write it like this:

let arrOfArrays2 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];

JavaScript Multiple Values

[60]

If you want to access elements of the inner arrays, you will have to specify an index
twice:

let value1 = arrOfArrays[0][1];

The statement will grab the first array because it has an index position of 0. From this
first array, it will take the second value, because it has an index position of 1. Then it
stores this value in value1. That means the value of value1 will be 2. Can you figure
out what the value of the next one will be?

let value2 = arrOfArrays[2][2];

It takes the third array, and from this third array, it takes the third value. Thus, 9 will
be stored in value2. And it does not stop here; it can go many levels deep. Let's show
that by creating an array of our array of arrays. We are simply going to store this
array three times in another array:

arrOfArraysOfArrays = [arrOfArrays, arrOfArrays, arrOfArrays];

This is what the array looks like in terms of values:

[
 [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
 [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
 [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
]

Let's get the middle element of this array, which is the value 5, belonging to the
second array of arrays. It is done like this:

let middleValue = arrOfArraysOfArrays[1][1][1];

The first step is to get the second array of arrays, so index 1. Then we need to get
the second array of this one, which again is index 1. Now we reach the level of the
values, and we need the second value, so again we use index 1. This is useful in
many situations, for example, when you want to work with matrices.

Practice exercise 3.3
1. Create an array containing three values: 1, 2, and 3.
2. Nest the original array into a new array three times.
3. Output the value 2 from one of the arrays into the console.

Chapter 3

[61]

Objects in JavaScript
Now it is time to have a look at another complex data structure that can contain
more than one value: objects! Objects are very useful and can be used to describe
real-life objects as well as more complex abstract concepts that allow for more
flexibility in your code.

Secretly, you have just been introduced to objects already, because arrays are a
very special type of object. Arrays are objects with indexed properties. All the other
objects, and also the objects we will see here, are objects with named properties. This
means that instead of an automatically generated index number, we will give it a
custom descriptive name.

As we can tell from the following code, arrays are defined by JavaScript as being of
the object type:

let arr = [0, 1, 2];
console.log(typeof arr);

The output of the preceding code is as follows:

Object

Objects are not too dissimilar to real-world objects. They have properties and they can
perform actions, methods. Here, we will only deal with the properties. We will cover
methods in Chapter 7, Classes, after we have seen functions. An object is a chance to
group multiple variables into one. This is done with curly brackets: { and }. Let's
have a look at this object of a dog here:

let dog = { dogName: "JavaScript",
 weight: 2.4,
 color: "brown",
 breed: "chihuahua",
 age: 3,
 burglarBiter: true
 };

We created a variable, dog, and we gave this an object as a value. We can recognize
that this is an object by seeing the { and }. In between the curly braces, we see a bunch
of properties and their values.

JavaScript Multiple Values

[62]

If you have ever wondered whether something should be a property, just try the
following template sentence in your head:

objectname has a(n) *property name*

For example, a dog has a name, a dog has a color, and a dog has a weight. This is
slightly different for the Boolean properties, for which you can use "is" or "is not"
instead of "has".

We can access the properties of this object in a very similar way as we would
with the array. This time, we are not using the index number, but the name of the
property, to get the value:

let dogColor1 = dog["color"];

There is another way to do this. Instead of the square brackets, the property name
can also be added to the object name with a dot in between:

let dogColor2 = dog.color;

This might look familiar. Do you remember how we got the length of an array with
the built-in property length? Yes—the same way! The difference between properties
and methods is the lack of parentheses for properties.

Updating objects
We can change the value of the properties of the objects. Again, this is similar to an
array because an array is an object as well, but for properties, we have two options:

dog["color"] = "blue";
dog.weight = 2.3;

This has changed the properties of our chihuahua JavaScript. The color gets updated
to blue and it has lost a little bit of weight since the new weight is 0.1 lower. So if we
log our dog:

console.log(dog);

We will get the following:

{
 dogName: 'JavaScript',
 weight: 2.3,
 color: 'blue',

Chapter 3

[63]

 breed: 'chihuahua',
 age: 3,
 burglarBiter: true
}

It's useful to note that if we change the data type of one of our properties, for
example:

dog["age"] = "three";

This is not a problem. JavaScript will just change the whole value and data type to
the new situation.

Another element to note is that we are now using the literal string values to refer to
the object's properties, but we can also work with variables to achieve this. So, for
example:

let variable = "age";
console.log(dog[variable]);

This will still output three, as we just changed the value of age to three. If we change
the value of the variable to another dog property, we will be accessing another
property, like this:

variable = "breed";
console.log(dog[variable]);

This will print chihuahua. And when we update the value accessing this way, it is
the exact same as when we would have accessed it with the literal string:

dog[variable] = "dachshund";
console.log(dog["breed"]);

So, this will log dachshund to the console.

Practice exercise 3.4
1. Create a new myCar object for a car. Add some properties, including, but not

limited to, make and model, and values for a typical car or your car. Feel free
to use booleans, strings, or numbers.

JavaScript Multiple Values

[64]

2. Create a variable that can hold the string value color. This variable
containing a string value color can now be used to reference the property
name within myCar. Then, use the variable within the square bracket notation
to assign a new value to the color property in myCar.

3. Use that same variable and assign a new property string value to it, such as
forSale. Use the bracket notation once again to assign a new value to the
forSale property to indicate whether the car is available for purchase.

4. Output make and model into the console.
5. Output the value of forSale into the console.

Working with objects and arrays
When working with objects and arrays, you will see these often combined. In the
last section of this chapter, we will deal with combining objects and arrays, and
also objects inside objects.

Objects in objects
Let's say we want to have an object for a company. This company will have an
address. And an address is another object. If we give our company an address,
we are using an object inside an object:

let company = { companyName: "Healthy Candy",
 activity: "food manufacturing",
 address: {
 street: "2nd street",
 number: "123",
 zipcode: "33116",
 city: "Miami",
 state: "Florida"
 },
 yearOfEstablishment: 2021
 };

As you can see, our company object has an address object with values. This can go
very many levels deep if necessary.

Chapter 3

[65]

To access or modify one of the properties of the address here, we can use two
approaches:

company.address.zipcode = "33117";
company["address"]["number"] = "100";

As you can see, this is very similar to the array. We first need to select the address
and then do the same thing to access the property we want to change.

Arrays in objects
Our company might have a range of activities instead of one. We can simply replace
the activity from our previous sample with an array:

company = { companyName: "Healthy Candy",
 activities: ["food manufacturing",
"improving kids' health", "manufacturing toys"],
 address: {
 street: "2nd street",
 number: "123",
 zipcode: "33116",
 city: "Miami",
 state: "Florida"
 },
 yearOfEstablishment: 2021
 };

We have now used an array in our company object. You can simply use an array
with the square braces after the property. Retrieving the individual values is very
similar. The second value of the activities array can be fetched using this statement:

let activity = company.activities[1];

Here, we call the object we're interested in, company, then the relevant array,
activities, with reference to the index position of the variable we're looking for
within the array, which is 1.

JavaScript Multiple Values

[66]

Objects in arrays
It is very possible that instead of one address, our company has a list of addresses.
We can accomplish this by creating an array of address objects. In this case, we will
create an array of two:

let addresses = [{
 street: "2nd street",
 number: "123",
 zipcode: "33116",
 city: "Miami",
 state: "Florida"
 },
 {
 street: "1st West avenue",
 number: "5",
 zipcode: "75001",
 city: "Addison",
 state: "Texas"
 }];

So, the arrays can be recognized by the square brackets and the objects by the curly
brackets. The street name of the first object can be fetched using this statement:

let streetName = addresses[0].street;

Here, we call the array we're interested in, addresses, with reference to the index
position of the object we're looking for within the array, 0, and then the required
variable from within the object, which is street. This may seem complicated, but
you may notice that this simply reverses the syntax required to retrieve a variable
from an array inside an object from the previous section. It's worth practicing calling
variables from nested arrays and objects until you're comfortable with it!

Objects in arrays in objects
Just to show that this can go as many levels as we would need, we are going to give
our company object an array of address objects. So, let's add this array of address
objects to our company object. This way, our company has an array of addresses:

 company = { companyName: "Healthy Candy",
 activities: ["food manufacturing",
"improving kids' health",

Chapter 3

[67]

"manufacturing toys"],
 address: [{
 street: "2nd street",
 number: "123",
 zipcode: "33116",
 city: "Miami",
 state: "Florida"
 },
 {
 street: "1st West avenue",
 number: "5",
 zipcode: "75001",
 city: "Addison",
 state: "Texas"
 }],
 yearOfEstablishment: 2021
 };

To access elements of increasingly nested objects and arrays, we simply extend
the same logic you have seen in the previous sections. To access the street name of
Healthy Candy's first address, we can use the following code:

let streetName = company.address[0].street;

As you see, we can stack object and array element requests indefinitely.

We will not make it any more complicated than this for now. Whenever you need
a list of something, you will be using an array. Whenever you want to represent
something with properties that have descriptive names, it is better to use an object.
Just remember that object properties can be of any type.

Practice exercise 3.5
1. Create an object named people that contains an empty array that is called

friends.
2. Create three variables, each containing an object, that contain one of your

friend's first names, last names, and an ID value.
3. Add the three friends to the friend array.
4. Output it to the console.

JavaScript Multiple Values

[68]

Chapter projects

Manipulating an array
Take the following array:

const theList = ['Laurence', 'Svekis', true, 35, null, undefined,
{test: 'one', score: 55}, ['one', 'two']];

Manipulate your array using various methods, such as pop(), push(), shift(), and
unshift(), and transform it into the following:

["FIRST", "Svekis", "MIDDLE", "hello World", "LAST"]

You can take the following steps, or adopt your own approach:

• Remove the first item and the last item.
• Add FIRST to the start of the array.
• Assign hello World to the fourth item value.
• Assign MIDDLE to the third index value.
• Add LAST to the last position in the array.
• Output it to the console.

Company product catalog
In this project, you will implement a data structure for a product catalog and create
queries to retrieve data.

1. Create an array to hold an inventory of store items.
2. Create three items, each having the properties of name, model, cost, and

quantity.
3. Add all three objects to the main array using an array method, and then log

the inventory array to the console.
4. Access the quantity element of your third item, and log it to the console.

Experiment by adding and accessing more elements within your data
structure.

Chapter 3

[69]

Self-check quiz
1. Can you use const and update values within an array?
2. Which property in an array gives the number of items contained in the array?
3. What is the output in the console?

const myArr1 = [1,3,5,6,8,9,15];
console.log(myArr1.indexOf(0));
console.log(myArr1.indexOf(3));

4. How do you replace the second element in an array myArr =
[1,3,5,6,8,9,15] with the value 4?

5. What is the output in the console?
const myArr2 = [];
myArr2[10] = 'test'
console.log(myArr2);
console.log(myArr2[2]);

6. What is the output in the console?

const myArr3 = [3,6,8,9,3,55,553,434];
myArr3.sort();
myArr3.length = 0;
console.log(myArr3[0]);

Summary
So, in this chapter, we have seen arrays and objects. Arrays are a list of values. These
could be values of the same type, but also values of different types. Every element
of the array gets an index. The index of the first element is 0. We can access the
elements of the array using this index. We can also use this index to change and
delete the element.

We then saw that it is also possible to have arrays containing other arrays; these are
multidimensional arrays. To access the elements of a multidimensional array, you
would need to use as many indices as you have nested arrays.

Then, we covered objects and learned that arrays are a special kind of object. Objects
contain properties and methods. We looked at the properties of objects and saw that
these properties are given a name and can be accessed and modified using this name.

We ended this module by looking at how arrays can contain objects, and how objects
can contain arrays and more. This enables us to create complex object structures,
which will be of great use in designing real-life applications.

[71]

4
Logic Statements

Up to this point, our code has been rather static. It will do the same thing every time
we execute it. In this chapter, that is all going to change. We will be dealing with
logical statements. Logical statements allow us to make multiple paths in our code.
Depending on the outcome of a certain expression, we will follow one code path or
another.

There are different logic statements, and we will go over them in this chapter. We
will start with if and if else statements. After that, we will be dealing with the
ternary operator, and the final one we will be dealing with is the switch statement.

Along the way, we will cover the following topics:

• if and if else statements
• else if statements
• Conditional ternary operators
• switch statements

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Logic Statements

[72]

if and if else statements
We can make decisions in our code using if and if else statements. It is very much
like this template:

if *some condition is true*, then *a certain action will happen*, else *another action will
happen*

For example, if it is raining then, I will take my umbrella, else I will leave my
umbrella at home. It is not that much different in code:

let rain = true;

if(rain){
 console.log("** Taking my umbrella when I need to go outside **");
} else {
 console.log("** I can leave my umbrella at home **");
}

In this case, the value of rain is true. And therefore, it will log to the console:

** Taking my umbrella when I need to go outside **

But let's first take a step back and look at the syntax. We start with the word "if." After
this, we get something within parentheses. Whatever is between these parantheses
will be translated to a Boolean. If the value of this Boolean is true, it will execute the
block of code associated with if. You can recognize this block by the curly braces.

The next block is optional; it is an else block. It starts with the word "else" and is
only executed in case of the Boolean having the value false. If there is no else block
and the condition evaluates to false, the program will just skip ahead to the code
underneath the if.

Only one of these two blocks will be executed; the if block when the expression is
true, and the else block when the expression is false:

if(expression) {
 // code associated with the if block
 // will only be executed if the expression is true
} else {
 // code associated with the else block
 // we don't need an else block, it is optional
 // this code will only be executed if the expression is false
}

Chapter 4

[73]

Here is another example. If the age is below 18, log to the console that access is
denied, otherwise log to the console that the person is allowed to come in:

if(age < 18) {
 console.log("We're very sorry, but you can't get in under 18");
} else {
 console.log("Welcome!");
}

There is a common coding mistake related to if statements. I have made it in the
following code snippet. Can you see what this code does?

let hobby = "dancing";

if(hobby == "coding"){
 console.log("** I love coding too! **");
} else {
 console.log("** Can you teach me that? **");
}

It will log the following:

** I love coding too! **

That might surprise you. The problem here is the single equal sign in the if
statement. Instead of evaluating the condition, it is assigning coding to hobby. And
then it is converting coding to a Boolean, and since it is not an empty string, it will
become true, so the if block will be executed. So, always remember to use the double
equal sign in this case.

Let's test our knowledge with a practice exercise.

Practice exercise 4.1
1. Create a variable with a Boolean value.
2. Output the value of the variable to the console.
3. Check whether the variable is true and if so, output a message to the console,

using the following syntax:
if(myVariable){
//action
}

Logic Statements

[74]

4. Add another if statement with an ! in front of the variable to check whether
the condition is not true, and create a message that will be printed to the
console in that instance. You should have two if statements, one with an
! and the other without. You could also use an if and an else statement
instead—experiment!

5. Change the variable to the opposite to see how the result changes.

else if statements
A variation of the if statement is an if statement with multiple else if blocks.
This can be more efficient in certain situations because you are always only going
to execute one or zero blocks. If you have many if else statements underneath one
another, they are going to be evaluated and possibly executed even though one of
the ones above already had a condition evaluate to true and proceeded to execute
the associated code block.

Here is the written template:

If *a value falls into a certain category*, then *a certain action will happen*, else if *the
value falls into a different category than the previous statement*, then *a certain action will
happen*, else if *the value falls into a different category than either of the previous brackets*,
then *a certain action will happen*

For example, take this statement, to determine what the ticket price should be. If
a person is younger than 3, then access is free, else if a person is older than 3 and
younger than 12, then access is 5 dollars, else if a person is older than 12 and younger
than 65, then access is 10 dollars, else if a person is 65 or older, then access is 7
dollars:

let age = 10;
let cost = 0;
let message;
if (age < 3) {
 cost = 0;
 message = "Access is free under three.";
} else if (age >= 3 && age < 12) {
 cost = 5;
 message ="With the child discount, the fee is 5 dollars";
} else if (age >= 12 && age < 65) {
 cost = 10;
 message ="A regular ticket costs 10 dollars.";

Chapter 4

[75]

} else {
 cost = 7;
 message ="A ticket is 7 dollars.";
}

console.log(message);
console.log("Your Total cost "+cost);

Chances are that you will think the code is easier to read than the written template.
In that case, nicely done! You are really starting to think like a JavaScript developer
already.

The code gets executed top to bottom, and only one of the blocks will be executed.
As soon as a true expression is encountered, the other ones will be ignored. This is
why we can also write our sample like this:

if(age < 3){
 console.log("Access is free under three.");
} else if(age < 12) {
 console.log("With the child discount, the fee is 5 dollars");
} else if(age < 65) {
 console.log("A regular ticket costs 10 dollars.");
} else if(age >= 65) {
 console.log("A ticket is 7 dollars.");
}

Practice exercise 4.2
1. Create a prompt to ask the user's age
2. Convert the response from the prompt to a number
3. Declare a message variable that you will use to hold the console message for

the user
4. If the input age is equal to or greater than 21, set the message variable to

confirm entry to a venue and the ability to purchase alcohol
5. If the input age is equal to or greater than 19, set the message variable to

confirm entry to the venue but deny the purchase of alcohol
6. Provide a default else statement to set the message variable to deny entry if

none are true
7. Output the response message variable to the console

Logic Statements

[76]

Conditional ternary operators
We did not actually discuss this very important operator in our section on operators
in Chapter 2, JavaScript Essentials. This is because it helps to understand the if else
statement first. Remember that we had a unary operator that was called a unary
operator because it only had one operand? This is why our ternary operator has its
name; it has three operands. Here is its template:

operand1 ? operand2 : operand3;

operand1 is the expression that is to be evaluated. If the value of the expression is
true, operand2 gets executed. If the value of the expression is false, operand3 gets
executed. You can read the question mark as "then" and the colon as "else" here:

expression ? statement for true : statement associated with false;

The template for saying it in your head should be:

if *operand1*, then *operand2*, else *operand3*

Let's have a look at a few examples:

let access = age < 18 ? "denied" : "allowed";

This little code snippet will assign a value to access. If age is lower than 18, then it
will assign the value denied, else it will assign the value allowed. You can also specify
an action in a ternary statement, like this:

age < 18 ? console.log("denied") : console.log("allowed");

This syntax can be confusing at first. The template of what to say in your head
while reading it can really come to the rescue here. You can only use these ternary
operators for very short actions, so it's best practice to use the ternary operator
in these instances as it makes code easier to read. However, if the logic contains
multiple comparison arguments, you'll have to use the regular if-else.

Practice exercise 4.3
1. Create a Boolean value for an ID variable
2. Using a ternary operator, create a message variable that will check whether

their ID is valid and either allow a person into a venue or not
3. Output the response to the console

Chapter 4

[77]

switch statements
If else statements are great for evaluating Boolean conditions. There are many things
you can do with them, but in some cases, it is better to replace them with a switch
statement. This is especially the case when evaluating more than four or five values.

We are going to see how switch statements can help us and what they look like.
First, have a look at this if else statement:

if(activity === "Get up") {
 console.log("It is 6:30AM");
} else if(activity === "Breakfast") {
 console.log("It is 7:00AM");
} else if(activity === "Drive to work") {
 console.log("It is 8:00AM");
} else if(activity === "Lunch") {
 console.log("It is 12.00PM");
} else if(activity === "Drive home") {
 console.log("It is 5:00PM")
} else if(activity === "Dinner") {
 console.log("It is 6:30PM");
}

It is determining what the time is based on what we are doing. It would be better
to implement this using a switch statement. The syntax of a switch statement looks
like this:

switch(expression) {
 case value1:
 // code to be executed
 break;
 case value2:
 // code to be executed
 break;
 case value-n:
 // code to be executed
 break;
}

You can read it in your head as follows: If the expression equals value1, do whatever
code is specified for that case. If the expression equals value2, do whatever code is
specified for that case, and so on.

Logic Statements

[78]

Here is how we can rewrite our long if else statement in a much cleaner manner
using a switch statement:

switch(activity) {
 case "Get up":
 console.log("It is 6:30AM");
 break;
 case "Breakfast":
 console.log("It is 7:00AM");
 break;
 case "Drive to work":
 console.log("It is 8:00AM");
 break;
 case "Lunch":
 console.log("It is 12:00PM");
 break;
 case "Drive home":
 console.log("It is 5:00PM");
 break;
 case "Dinner":
 console.log("It is 6:30PM");
 break;
}

If our activity has the value Lunch it will output the following to the console:

It is 12:00PM

What's up with all these breaks, you may be wondering? If you do not use the
command break at the end of a case, it will execute the next case as well. This will
be done from the case where it has a match, until the end of the switch statement
or until we encounter a break statement. This is what the output of our switch
statement would be without breaks for the Lunch activity:

It is 12:00PM
It is 5:00PM
It is 6:30PM

One last side note. switch uses strict type checking (the triple equals strategy) to
determine equality, which checks for both a value and a data type.

Chapter 4

[79]

The default case
There is one part of switch that we have not worked with yet, and that is a special
case label, namely, default. This works a lot like the else part of an if else statement.
If it does not find a match with any of the cases and a default case is present, then
it will execute the code associated with the default case. Here is the template of a
switch statement with a default case:

switch(expression) {
 case value1:
 // code to be executed
 break;
 case value2:
 // code to be executed
 break;
 case value-n:
 // code to be executed
 break;
 default:
 // code to be executed when no cases match
 break;
}

The convention is to have the default case as the last case in the switch statement,
but the code will work just fine when it is in the middle or the first case. However,
we recommend you stick to the conventions and have it as a last case, since that is
what other developers (and probably your future self) will expect when dealing
with your code later.

Let's say our long if statement has an else statement associated with it that looks
like this:

if(…) {
 // omitted to avoid making this unnecessarily long
} else {
 console.log("I cannot determine the current time.");
}

The switch statement would then look like this:

switch(activity) {
 case "Get up":
 console.log("It is 6:30AM");

Logic Statements

[80]

 break;
 case "Breakfast":
 console.log("It is 7:00AM");
 break;
 case "Drive to work":
 console.log("It is 8:00AM");
 break;
 case "Lunch":
 console.log("It is 12:00PM");
 break;
 case "Drive home":
 console.log("It is 5:00PM");
 break;
 case "Dinner":
 console.log("It is 6:30PM");
 break;
 default:
 console.log("I cannot determine the current time.");
 break;
}

If the value of the activity was to be something that is not specified as a case, for
example, "Watch Netflix," it would log the following to the console:

I cannot determine the current time.

Practice exercise 4.4
As discussed in Chapter 1, Getting Started with JavaScript, the JavaScript function Math.
random() will return a random number in the range of 0 to less than 1, including 0
but not 1. You can then scale it to the desired range by multiplying the result and
using Math.floor() to round it down to the nearest whole number; for example, to
generate a random number between 0 and 9:

// random number between 0 and 1
let randomNumber = Math.random();
// multiply by 10 to obtain a number between 0 and 10
randomNumber = randomNumber * 10;
// removes digits past decimal place to provide a whole number
RandomNumber = Math.floor(randomNumber);

Chapter 4

[81]

In this exercise, we'll create a Magic 8-Ball random answer generator:

1. Start by setting a variable that gets a random value assigned to it. The value
is assigned by generating a random number 0-5, for 6 possible results. You
can increase this number as you add more results.

2. Create a prompt that can get a string value input from a user that you can
repeat back in the final output.

3. Create 6 responses using the switch statement, each assigned to a different
value from the random number generator.

4. Create a variable to hold the end response, which should be a sentence
printed for the user. You can assign different string values for each case,
assigning new values depending on the results from the random value.

5. Output the user's original question, plus the randomly selected case
response, to the console after the user enters their question.

Combining cases
Sometimes, you would want to do the exact same thing for multiple cases. In an if
statement, you would have to specify all the different or (||) clauses. In a switch
statement, you can simply combine them by putting them on top of each other like
this:

switch(grade){
 case "F":
 case "D":
 console.log("You've failed!");
 break;
 case "C":
 case "B":
 console.log("You've passed!");
 break;
 case "A":
 console.log("Nice!");
 break;
 default:
 console.log("I don't know this grade.");
}

Logic Statements

[82]

For the values F and D, the same thing is happening. This is also true for C and B.
When the value of grade is either C or B, it will log the following to the console:

You've passed!

This is more readable than the alternative if-else statement:

if(grade === "F" || grade === "D") {
 console.log("You've failed!");
} else if(grade === "C" || grade === "B") {
 console.log("You've passed!");
} else if(grade === "A") {
 console.log("Nice!");
} else {
 console.log("I don't know this grade.");
}

Practice exercise 4.5
1. Create a variable called prize and use a prompt to ask the user to set the

value by selecting a number between 0 and 10
2. Convert the prompt response to a number data type
3. Create a variable to use for the output message containing the value "My

Selection: "
4. Using the switch statement (and creativity), provide a response back

regarding a prize that is awarded depending on what number is selected
5. Use the switch break to add combined results for prizes
6. Output the message back to the user by concatenating your prize variable

strings and the output message string

Chapter projects

Evaluating a number game
Ask the user to enter a number and check whether it's greater than, equal to, or less
than a dynamic number value in your code. Output the result to the user.

Chapter 4

[83]

Friend checker game
Ask the user to enter a name, using the switch statement to return a confirmation
that the user is a friend if the name selected is known in the case statements. You
can add a default response that you don't know the person if it's an unknown name.
Output the result into the console.

Rock Paper Scissors game
This is a game between a player and the computer, where both will make a random
selection of either Rock, Paper, or Scissors (alternatively, you could create a version
using real player input!). Rock will beat out Scissors, Paper will beat out Rock, and
Scissors will beat out Paper. You can use JavaScript to create your own version of
this game, applying the logic with an if statement. Since this project is a little more
difficult, here are some suggested steps:

1. Create an array that contains the variables Rock, Paper, and Scissors.
2. Set up a variable that generates a random number 0-2 for the player and then

do the same for the computer's selection. The number represents the index
values in the array of the 3 items.

3. Create a variable to hold a response message to the user. This can show the
random results for the player and then also the result for the computer of the
matching item from the array.

4. Create a condition to handle the player and computer selections. If both are
the same, this results in a tie.

5. Use conditions to apply the game logic and return the correct results.
There are several ways to do this with the condition statements, but you
could check which player's index value is bigger and assign the victory
accordingly, with the exception of Rock beating Scissors.

6. Add a new output message that shows the player selection versus the
computer selection and the result of the game.

Self-check quiz
1. What will be outputted to the console in this instance?

const q = '1';
switch (q) {
 case '1':
 answer = "one";

Logic Statements

[84]

 break;
 case 1:
 answer = 1;
 break;
 case 2:
 answer = "this is the one";
 break;
 default:
 answer = "not working";
}
console.log(answer);

2. What will be outputted to the console in this instance?
const q = 1;

switch (q) {
 case '1':
 answer = "one";
 case 1:
 answer = 1;
 case 2:
 answer = "this is the one";
 break;
 default:
 answer = "not working";
}
console.log(answer);

3. What will be outputted to the console in this instance?
let login = false;
let outputHolder = "";
let userOkay = login ? outputHolder = "logout" : outputHolder =
"login";
console.log(userOkay);

4. What will be outputted to the console in this instance?
const userNames = ["Mike", "John", "Larry"];
const userInput = "John";
let htmlOutput = "";
if (userNames.indexOf(userInput) > -1) {
 htmlOutput = "Welcome, that is a user";

Chapter 4

[85]

} else {
 htmlOutput = "Denied, not a user ";
}
console.log(htmlOutput + ": " + userInput);

5. What will be outputted to the console in this instance?
let myTime = 9;
let output;
if (myTime >= 8 && myTime < 12) {
 output = "Wake up, it's morning";
} else if (myTime >= 12 && myTime < 13) {
 output = "Go to lunch";
} else if (myTime >= 13 && myTime <= 16) {
 output = "Go to work";
} else if (myTime > 16 && myTime < 20) {
 output = "Dinner time";
} else if (myTime >= 22) {
 output = "Time to go to sleep";
} else {
 output = "You should be sleeping";
}
console.log(output);

6. What will be outputted to the console in this instance?
let a = 5;
let b = 10;
let c = 20;
let d = 30;
console.log(a > b || b > a);
console.log(a > b && b > a);
console.log(d > b || b > a);
console.log(d > b && b > a);

7. What will be outputted to the console in this instance?

let val = 100;
let message = (val > 100) ? `${val} was greater than 100` :
`${val} was LESS or Equal to 100`;
console.log(message);
let check = (val % 2) ? `Odd` : `Even`;
check = `${val} is ${check}`;
console.log(check);

Logic Statements

[86]

Summary
Now, let's wrap things up. In this chapter, we have covered conditional statements.
We started with if else statements. Whenever the condition associated with the if
is true, the if block gets executed. If the condition is false and there is an else block
present, that will be executed. We have also seen ternary operators and the funky
syntax they bring to the table. It is a short way of writing an if-else statement if you
only need one statement per block.

And lastly, we have seen switch statements and how they can be used to optimize
our conditional code. With the switch statement, we can compare one condition
with many different cases. When they are equal (value and type), the code
associated with the case gets executed.

In the next chapter, we are going to add loops to the mix! This is going to help us
write more efficient code and algorithms.

[87]

5
Loops

We are starting to get a good basic grasp of JavaScript. This chapter will focus on
a very important control flow concept: loops. Loops execute a code block a certain
number of times. We can use loops to do many things, such as repeating operations a
number of times and iterating over data sets, arrays, and objects. Whenever you feel
the need to copy a little piece of code and place it right underneath where you copied
it from, you should probably be using a loop instead.

We will first discuss the basics of loops, then continue to discuss nesting loops,
which is basically using loops inside loops. Also, we will explain looping over two
complex constructs we have seen, arrays and objects. And finally, we will introduce
two keywords related to loops, break and continue, to control the flow of the loop
even more.

These are the different loops we will be discussing in this chapter:

• while loop
• do while loop
• for loop
• for in
• for of loop

There is one topic that is closely related to loops that is not in this
chapter. This is the built-in foreach method. We can use this
method to loop over arrays, when we can use an arrow function.
Since we won't discuss these until the next chapter, foreach is not
included here.

Loops

[88]

while loops
The first loop we will discuss is the while loop. A while loop executes a certain block
of code as long as an expression evaluates to true. The snippet below demonstrates
the syntax of the while loop:

while (condition) {
 // code that gets executed as long as the condition is true
}

The while loop will only be executed as long as the condition is true, so if the
condition is false to begin with, the code inside will be skipped.

Here is a very simple example of a while loop printing the numbers 0 to 10
(excluding 10) to the console:

let i = 0;
while (i < 10) {
 console.log(i);
 i++;
}

The output will be as follows:

1
2
3
4
5
6
7
8
9

These are the steps happening here:

1. Create a variable, i, and set its value to zero
2. Start the while loop and check the condition that the value of i is smaller

than 10

Note: exercise, project, and self-check quiz answers can be found in
the Appendix.

Chapter 5

[89]

3. Since the condition is true, the code logs i and increases i by 1
4. The condition gets evaluated again; 1 is still smaller than 10
5. Since the condition is true, the code logs i and increases i by 1
6. The logging and increasing continues until i becomes 10
7. 10 is not smaller than 10, so the loop ends

We can have a while loop that looks for a value in an array, like this:

let someArray = ["Mike", "Antal", "Marc", "Emir", "Louiza", "Jacky"];
let notFound = true;

while (notFound && someArray.length > 0) {
 if (someArray[0] === "Louiza") {
 console.log("Found her!");
 notFound = false;
 } else {
 someArray.shift();
 }
}

It checks whether the first value of the array is a certain value, and when it is not, it
deletes that value from the array using the shift method. Remember this method?
It removes the first element of the array. So, by the next iteration, the first value has
changed and is checked again. If it stumbles upon the value, it will log this to the
console and change the Boolean notFound to false, because it has found it. That was
the last iteration and the loop is done. It will output:

Found her!
false

Why do you think the && someArray.length > 0 is added in the while condition? If
we were to leave it out, and the value we were looking for was not in the array, we
would get stuck in an infinite loop. This is why we make sure that we also end things
if our value is not present, so our code can continue.

But we can also do more sophisticated things very easily with loops. Let's see how
easy it is to fill an array with the Fibonacci sequence using a loop:

let nr1 = 0;
let nr2 = 1;
let temp;

Loops

[90]

fibonacciArray = [];

while (fibonacciArray.length < 25) {
 fibonacciArray.push(nr1);
 temp = nr1 + nr2;
 nr1 = nr2;
 nr2 = temp;
}

In the Fibonacci sequence, each value is the sum of the two previous values, starting
with the values 0 and 1. We can do this in a while loop as stated above. We create
two numbers and they change every iteration. We have limited our number of
iterations to the length of the fibonacciArray, because we don't want an infinite
loop. In this case the loop will be done as soon as the length of the array is no longer
smaller than 25.

We need a temporary variable that stores the next value for nr2. And every iteration
we push the value of the first number to the array. If we log the array, you can see
the numbers getting rather high very quickly. Imagine having to generate these
values one by one in your code!

[
 0, 1, 1, 2, 3,
 5, 8, 13, 21, 34,
 55, 89, 144, 233, 377,
 610, 987, 1597, 2584, 4181,
 6765, 10946, 17711, 28657, 46368
]

Practice exercise 5.1
In this exercise we will create a number guessing game that takes user input and
replies based on how accurate the user's guess was.

1. Create a variable to be used as the max value for the number guessing game.
2. Generate a random number for the solution using Math.random() and

Math.floor(). You will also need to add 1 so that the value is returned as
1-[whatever the set max value is]. You can log this value to the console for
development to see the value as you create the game, then when the game is
complete you can comment out this console output.

Chapter 5

[91]

3. Create a variable that will be used for tracking whether the answer is correct
or not and set it to a default Boolean value of false. We can update it to be
true if the user guess is a match.

4. Use a while loop to iterate a prompt that asks the user to enter a number
between 1 and 5, and convert the response into a number in order to match
the data type of the random number.

5. Inside the while loop, check using a condition to see if the prompt value is
equal to the solution number. Apply logic such that if the number is correct,
you set the status to true and break out of the loop. Provide the player with
some feedback as to whether the guess was high or low, and initiate another
prompt until the user guesses correctly. In this way we use the loop to keep
asking until the solution is correct, and at that point we can stop the iteration
of the block of code.

do while loops
In some cases, you really need the code block to be executed at least once. For
example, if you need valid user input, you need to ask at least once. The same goes
for trying to connect with a database or some other external source: you will have to
do so at least once in order for it to be successful. And you will probably need to do
so as long as you did not get the result you needed. In these cases, you can use a do
while loop.

Here is what the syntax looks like:

do {
 // code to be executed if the condition is true
} while (condition);

It executes what is within the do block, and then after that it evaluates the while. If
the condition is true, it will execute what is in the do block again. It will continue to
do so until the condition in the while changes to false.

We can use the prompt() method to get user input. Let's use a do while loop to ask
the user for a number between 0 and 100.

let number;
do {
 number = prompt("Please enter a number between 0 and 100: ");
} while (!(number >= 0 && number < 100));

Loops

[92]

Here is the output; you will have to enter the number in the console yourself here.

Please enter a number between 0 and 100: > -50
Please enter a number between 0 and 100: > 150
Please enter a number between 0 and 100: > 34

It asks three times, because the first two times the number was not between 0 and
100 and the condition in the while block was true. With 34, the condition in the while
block became false and the loop ended.

Practice exercise 5.2
In this exercise, we will create a basic counter that will increase a dynamic variable
by a consistent step value, up to an upper limit.

1. Set the starting counter to 0
2. Create a variable, step, to increase your counter by
3. Add a do while loop, printing the counter to the console and incrementing it

by the step amount each loop
4. Continue to loop until the counter is equal to 100 or more than 100

for loops
for loops are special loops. The syntax might be a little bit confusing at first, but you
will find yourself using them soon, because they are very useful.

Here is what the syntax looks like:

for (initialize variable; condition; statement) {
 // code to be executed
}

Everything behind the > is user input here. The > is part of the
code; it is added by the console to make the distinction between
console output (Please enter a number between 0 and 100)
and the console input (-50, 150, and 34) clearer.

Chapter 5

[93]

Between the parentheses following the for statement, there are three parts, separated
by semi-colons. The first one initializes the variables that can be used in the for loop.
The second one is a condition: as long as this condition is true, the loop will keep on
iterating. This condition gets checked after initializing the variables before the first
iteration (this will only take place when the condition evaluates to true). The last one
is a statement. This statement gets executed after every iteration. Here is the flow of a
for loop:

1. Initialize the variables.
2. Check the condition.
3. If the condition is true, execute the code block. If the condition is false, the

loop will end here.
4. Perform the statement (the third part, for example, i++).
5. Go back to step 2.

This is a simple example that logs the numbers 0 to 10 (excluding 10) to the console:

for (let i = 0; i < 10; i++) {
 console.log(i);
}

It starts by creating a variable, i, and sets this to 0. Then it checks whether i is
smaller than 10. If it is, it will execute the log statement. After this, it will execute i++
and increase i by one.

The condition gets checked again. And this goes on until i reaches a value of 10. 10 is
not smaller than 10, so the loop is done executing and the numbers 0 to 9 have been
logged to the console.

We can also use a for loop to create a sequence and add values to an array, like this:

let arr = [];
for (let i = 0; i < 100; i++) {
 arr.push(i);
}

If we don't increase i, we will get stuck in an infinite loop, since
the value of i would not change and it would be smaller than 10
forever. This is something to look out for in all loops!

Loops

[94]

This is what the array looks like after this loop:

[
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83,
 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
 96, 97, 98, 99
]

Since the loop ran the block of code 100 times, starting with an initial value of 0 for
i, the block of code will add the incrementing value into the array at the end of the
array. This results in an array that has a count of 0–99 and a length of 100 items. Since
arrays start with an index value of zero, the values in the array will actually match
up with the index values of the items in the array.

Or we could create an array containing only even values:

let arr = [];
for (let i = 0; i < 100; i = i + 2) {
 arr.push(i);
}

Resulting in this array:

[
 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20,
 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42,
 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86,
 88, 90, 92, 94, 96, 98
]

Most commonly, you will see i++ as the third part of the for loop, but please note
that you can write any statement there. In this case, we are using i = i + 2 to add 2
to the previous value every time, creating an array with only even numbers.

Chapter 5

[95]

Practice exercise 5.3
In this exercise we will use a for loop to create an array that holds objects. Starting
with creating a blank array, the block of code within the loop will create an object
that gets inserted into the array.

1. Setup a blank array, myWork.
2. Using a for loop, create a list of 10 objects, each of which is a numbered

lesson (e.g. Lesson 1, Lesson 2, Lesson 3….) with an alternating true/false
status for every other item to indicate whether the class will be running this
year. For example:

name: 'Lesson 1', status: true

3. You can specify the status by using a ternary operator that checks whether
the modulo of the given lesson value is equal to zero and by setting up a
Boolean value to alternate the values each iteration.

4. Create a lesson using a temporary object variable, containing the name
(lesson with the numeric value) and predefined status (which we set up in
the previous step).

5. Push the objects to the myWork array.
6. Output the array to the console.

Nested loops
Sometimes it can be necessary to use a loop inside a loop. A loop inside a loop is
called a nested loop. Often it is not the best solution to the problem. It could even be
a sign of poorly written code (sometimes called "code smell" among programmers),
but every now and then it is a perfectly fine solution to a problem.

Here is what it would look like for while loops:

while (condition 1) {
 // code that gets executed as long as condition 1 is true
 // this loop depends on condition 1 being true
 while (condition 2) {
 // code that gets executed as long as condition 2 is true
 }
}

Loops

[96]

Nesting can also be used with for loops, or with a combination of both for and
while, or even with all kinds of loops; they can go several levels deep.

An example in which we might use nested loops would be when we want to create
an array of arrays. With the outer loop, we create the top-level array, and with the
inner loop we add the values to the array.

let arrOfArrays = [];
for (let i = 0; i < 3; i++){
 arrOfArrays.push([]);
 for (let j = 0; j < 7; j++) {
 arrOfArrays[i].push(j);
 }
}

When we log this array like this:

console.log(arrOfArrays);

We can see that the output is an array of arrays with values from 0 up to 6.

[
 [
 0, 1, 2, 3, 4, 5, 6
],
 [
 0, 1, 2, 3, 4, 5, 6
],
 [
 0, 1, 2, 3, 4, 5, 6
]
]

We used the nested loops to create an array in an array, meaning we can work with
rows and columns after having created this loop. This means nested loops can be
used to create tabular data. We can show this output as a table using the console.
table() method instead, like so:

console.table(arrOfArrays);

Chapter 5

[97]

This will output:

┌─────────┬───┬───┬───┬───┬───┬───┬───┐
│ (index) │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │
├─────────┼───┼───┼───┼───┼───┼───┼───┤
│ 0 │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │
│ 1 │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │
│ 2 │ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │
└─────────┴───┴───┴───┴───┴───┴───┴───┘

Let's put this into practice in the next exercise.

Practice exercise 5.4
In this exercise we will be generating a table of values. We will be using loops to
generate rows and also columns, which will be nested within the rows. Nested arrays
can be used to represent rows in a table. This is a common structure in spreadsheets,
where each row is a nested array within a table and the contents of these rows are
the cells in the table. The columns will align as we are creating an equal number of
cells in each row.

1. To create a table generator, first create an empty array, myTable, to hold your
table data.

2. Set variable values for the number of rows and columns. This will allow us
to dynamically control how many rows and columns we want within the
table. Separating the values from the main code helps make updates to the
dimensions easier.

3. Set up a counter variable with an initial value of 0. The counter will be used
to set the content and count the values of the cells within the table.

4. Create a for loop with conditions to set the number of iterations, and to
construct each row of the table. Within it, set up a new temporary array
(tempTable) to hold each row of data. The columns will be nested within
the rows, generating each cell needed for the column.

5. Nest a second loop within the first to count the columns. Columns are run
within the row loop so that we have a uniform number of columns within
the table.

Loops

[98]

6. Increment the main counter each iteration of the inner loop, so that we track
a master count of each one of the cells and how many cells are created.

7. Push the counter values to the temporary array, tempTable. Since the array is
a nested array representing a table, the values of the counter can also be used
to illustrate the cell values next to each other in the table. Although these are
separate arrays representing new rows, the value of the counter will help
illustrate the overall sequence of cells in the final table.

8. Push the temporary array to the main table. As each iteration builds a new
row of array items, this will continue to build the main table in the array.

9. Output into the console with console.table(myTable). This will show you a
visual representation of the table structure.

Loops and arrays
If you are not convinced of how extremely useful loops are by now, have a look at
loops and arrays. Loops make life with arrays a lot more comfortable.

We can combine the length property and the condition part of the for loop or while
loop to loop over arrays. It would look like this in the case of a for loop:

let arr = [some array];
for (initialize variable; variable smaller than arr.length; statement)
{
 // code to be executed
}

Let's start with a simple example that is going to log every value of the array:

let names = ["Chantal", "John", "Maxime", "Bobbi", "Jair"];
for (let i = 0; i < names.length; i ++){
 console.log(names[i]);
}

This will output:

Chantal
John
Maxime
Bobbi
Jair

Chapter 5

[99]

We use the length property to determine the maximum value of our index. The
index starts counting at 0, but the length does not. The index is always one smaller
than the length. Hence, we loop over the values of the array by increasing the length.

In this case we aren't doing very interesting things yet; we are simply printing the
values. But we could be changing the values of the array in a loop, for example, like
this:

let names = ["Chantal", "John", "Maxime", "Bobbi", "Jair"];
for (let i = 0; i < names.length; i ++){
 names[i] = "hello " + names[i];
}

We have concatenated hello with the beginnings of our names. The array is changed
in the loop and the array will have this content after the loop has executed:

[
 'hello Chantal',
 'hello John',
 'hello Maxime',
 'hello Bobbi',
 'hello Jair'
]

The possibilities are endless here. When an array comes in somewhere in the
application, data can be sent to the database per value. Data can be modified by
value, or even filtered, like this:

let names = ["Chantal", "John", "Maxime", "Bobbi", "Jair"];
for (let i = 0; i < names.length; i ++){
 if(names[i].startsWith("M")){
 delete names[i];
 continue;
 }
 names[i] = "hello " + names[i];
}
console.log(names);

The startsWith() method just checks whether the string starts with a certain
character. In this case it checks whether the name starts with the string M.

Loops

[100]

The output is:

[
 'hello Chantal',
 'hello John',
 <1 empty item>,
 'hello Bobbi',
 'hello Jair'
]

You'll have to be careful here though. If we were to remove the item instead of
deleting it and leaving an empty value, we would accidentally skip the next value,
since that value gets the index of the recently deleted one and i is incremented and
moves on to the next index.

What do you think this one does:

let names = ["Chantal", "John", "Maxime", "Bobbi", "Jair"];
for (let i = 0; i < names.length; i++){
 names.push("...")
}

Your program gets stuck in an infinite loop here. Since a value gets added every
iteration, the length of the loop grows with every iteration and i will never be bigger
than or equal to length.

Practice exercise 5.5
Explore how to create a table grid that contains nested arrays as rows within a table.
The rows will each contain the number of cells needed for the number of columns set
in the variables. This grid table will dynamically adjust depending on the values for
the variables.

1. Create a grid array variable.
2. Set a value of 64 for the number of cells.
3. Set a counter to 0.

Don't worry, we will cover this function and many more in detail
in Chapter 8, Built-in JavaScript Methods.

Chapter 5

[101]

4. Create a global variable to be used for the row array.
5. Create a loop that will iterate up to the number of cells you want in the array,

plus one to include the zero value. In our example, we would use 64+1.
6. Add an outer if statement, which uses modulo to check if the main counter

is divisible by 8 or whatever number of columns you want.
7. Inside the preceding if statement, add another if statement to check if the

row is undefined, indicating whether it is the first run or whether the row
is complete. If the row has been defined, then add the row to the main grid
array.

8. To finish off the outer if statement, if the counter is divisible by 8, clear the
row array—it has already been added to the grid by the inner if statement.

9. At the end of the for loop, increment of the main counter by 1.
10. Set up a temporary variable to hold the value of the counter and push it to

the row array.
11. Within the loop iteration, check if the value of the counter is equal to the total

number of columns you want; if it is, then add the current row to the grid.
12. Please note that the extra cell will not be added to the grid since there aren't

enough cells to make a new row within the condition that adds the rows to
the grid. An alternative solution would be to remove the +1 from the loop
condition and add grid.push(row) after the loop is completed, both of which
will provide the same solution output.

13. Output the grid into the console.

for of loop
There is another loop we can use to iterate over the elements of an array: the for of
loop. It cannot be used to change the value associated with the index as we can do
with the regular loop, but for processing values it is a very nice and readable loop.

Here is what the syntax looks like:

let arr = [some array];
for (let variableName of arr) {
 // code to be executed
 // value of variableName gets updated every iteration
 // all values of the array will be variableName once
}

Loops

[102]

So you can read it like this: "For every value of the array, call it variableName and do
the following." We can log our names array using this loop:

let names = ["Chantal", "John", "Maxime", "Bobbi", "Jair"];
for (let name of names){
 console.log(name);
}

We need to specify a temporary variable; in this case we called it name. This is used to
put the value of the current iteration in, and after the iteration, it gets replaced with
the next value. This code results in the following output:

Chantal
John
Maxime
Bobbi
Jair

There are some limitations here; we cannot modify the array, but we could write all
the elements to a database or a file, or send it somewhere else. The advantage of this
is that we cannot accidentally get stuck in an infinite loop or skip values.

Practice exercise 5.6
This exercise will construct an array as it loops through the incrementing values of
x. Once the array is done, this exercise also will demonstrate several ways to output
array contents.

1. Create an empty array
2. Run a loop 10 times, adding a new incrementing value to the array
3. Log the array into the console
4. Use the for loop to iterate through the array (adjust the number of iterations

to however many values are in your array) and output into the console
5. Use the for of loop to output the value into the console from the array

Loops and objects
We have just seen how to loop over the values of an array, but we can also loop
over the properties of an object. This can be helpful when we need to go over all the
properties but don't know the exact properties of the object we are iterating over.

Chapter 5

[103]

Looping over an object can be done in a few ways. We can use the for in loop to
loop over the object directly, or we can convert the object to an array and loop over
the array. We'll consider both in the following sections.

for in loop
Manipulating objects with loops can also be done with another variation of the for
loop, the for in loop. The for in loop is somewhat similar to the for of loop. Again
here, we need to specify a temporary name, also referred to as a key, to store each
property name in. We can see it in action here:

let car = {
 model: "Golf",
 make: "Volkswagen",
 year: 1999,
 color: "black",
};

for (let prop in car){
 console.log(car[prop]);
}

We need to use the prop of each loop iteration to get the value out of the car object.
The output then becomes:

Golf
Volkswagen
1999
black

If we just logged the prop, like this:

for (let prop in car){
 console.log(prop);
}

This is what our output would look like:

model
make
year
color

Loops

[104]

As you can see, all the names of the properties get printed, and not the values. This
is because the for in loop is getting the property names (keys) and not the values.
The for of is doing the opposite; it is getting the values and not the keys.

This for in loop can also be used on arrays, but it is not really useful. It will only
return the indices, since these are the "keys" of the values of the arrays. Also, it
should be noted that the order of execution cannot be guaranteed, even though
this is usually important for arrays. It is therefore better to use the approaches
mentioned in the section on loops and arrays.

Practice exercise 5.7
In this exercise, we will experiment with looping over objects and internal arrays.

1. Create a simple object with three items in it.
2. Using the for in loop, get the properties' names and values from the object

and output them into the console.
3. Create an array containing the same three items. Using either the for loop or

the for in loop, output the values from the array into the console.

Looping over objects by converting to an
array
You can use any loop on objects, as soon as you convert the object to an array. This
can be done in three ways:

• Convert the keys of the object to an array
• Convert the values of the object to an array
• Convert the key-value entries to an array (containing arrays with two

elements: object key and object value)

Let's use this example:

let car = {
 model: "Golf",
 make: "Volkswagen",
 year: 1999,
 color: "black",
};

Chapter 5

[105]

If we want to loop over the keys of the object, we can use the for in loop, as we saw
in the previous section, but we can also use the for of loop if we convert it to an
array first. We do so by using the Object.keys(nameOfObject) built-in function. This
takes an object and grabs all the properties of this object and converts them to an
array.

To demonstrate how this works:

let arrKeys = Object.keys(car);
console.log(arrKeys);

This will output:

['model', 'make', 'year', 'color']

We can loop over the properties of this array like this using the for of loop:

for(let key of Object.keys(car)) {
 console.log(key);
}

And this is what it will output:

model
make
year
color

Similarly, we can use the for of loop to loop over the values of the object by
converting the values to an array. The main difference here is that we use Object.
values(nameOfObject):

for(let key of Object.values(car)) {
 console.log(key);
}

You can loop over these arrays in the same way you loop over any array. You can
use the length and index strategy like this in a regular for loop:

let arrKeys = Object.keys(car);
for(let i = 0; i < arrKeys.length; i++) {
 console.log(arrKeys[i] + ": " + car[arrKeys[i]]);
}

Loops

[106]

And this will output:

model: Golf
make: Volkswagen
year: 1999
color: black

More interesting is how to loop over both arrays at the same time using the for of
loop. In order to do so, we will have to use Object.entries(). Let's demonstrate
what it does:

let arrEntries = Object.entries(car);
console.log(arrEntries);

This will output:

[
 ['model', 'Golf'],
 ['make', 'Volkswagen'],
 ['year', 1999],
 ['color', 'black']
]

As you can see, it is returning a two-dimensional array, containing key-value pairs.
We can loop over it like this:

for (const [key, value] of Object.entries(car)) {
 console.log(key, ":", value);
}

And this will output:

model : Golf
make : Volkswagen
year : 1999
color : black

Alright, you have seen many ways to loop over objects now. Most of them come
down to converting the object to an array. We can imagine that at this point you
could use a break. Or maybe you'd just like to continue?

Chapter 5

[107]

break and continue
break and continue are two keywords that we can use to control the flow of
execution of the loop. break will stop the loop and move on to the code below the
loop. continue will stop the current iteration and move back to the top of the loop,
checking the condition (or in the case of a for loop, performing the statement and
then checking the condition).

We will be using this array of car objects to demonstrate break and continue:

let cars = [
 {
 model: "Golf",
 make: "Volkswagen",
 year: 1999,
 color: "black",
 },
 {
 model: "Picanto",
 make: "Kia",
 year: 2020,
 color: "red",
 },
 {
 model: "Peugeot",
 make: "208",
 year: 2021,
 color: "black",
 },
 {
 model: "Fiat",
 make: "Punto",
 year: 2020,
 color: "black",
 }
];

We will first have a closer look at break.

Loops

[108]

break
We have already seen break in the switch statement. When break was executed, the
switch statement ended. This is not very different when it comes to loops: when the
break statement is executed, the loop will end, even when the condition is still true.

Here is a silly example to demonstrate how break works:

for (let i = 0; i < 10; i++) {
 console.log(i);
 if (i === 4) {
 break;
 }
}

It looks like a loop that will log the numbers 0 to 10 (again excluding 10) to the
console. There is a catch here though: as soon as i equals 4, we execute the break
command. break ends the loop immediately, so no more loop code gets executed
afterward.

We can also use break to stop looping through the array of cars when we have
found a car that matches our demands.

for (let i = 0; i < cars.length; i++) {
 if (cars[i].year >= 2020) {
 if (cars[i].color === "black") {
 console.log("I have found my new car:", cars[i]);
 break;
 }
 }
}

As soon as we run into a car with the year 2020 or later and the car is black, we will
stop looking for other cars and just buy that one. The last car in the array would also
have been an option, but we did not even consider it because we found one already.
The code snippet will output this:

I have found my new car: { model: 'Peugeot', make: '208', year: 2021,
color: 'black' }

However, often it is not a best practice to use break. If you can manage to work
with the condition of the loop to break out of the loop instead, this is a much better
practice. It prevents you getting stuck in an infinite loop, and the code is easier to
read.

Chapter 5

[109]

If the condition of the loop is not an actual condition, but pretty much a run-forever
kind of statement, the code gets hard to read.

Consider the following code snippet:

while (true) {
 if (superLongArray[0] != 42 && superLongArray.length > 0) {
 superLongArray.shift();
 } else {
 console.log("Found 42!");
 break;
 }
}

This would be better to write without break and without something terrible like
while(true); you could do it like this:

while (superLongArray.length > 0 && notFound) {
 if (superLongArray[0] != 42) {
 superLongArray.shift();
 } else {
 console.log("Found 42!");
 notFound = false;
 }
}

With the second example, we can see the conditions of the loop easily, namely the
length of the array and a notFound flag. However, with while(true) we are kind
of misusing the while concept. You want to specify the condition, and it should
evaluate to true or false; this way your code is nice to read. If you say while(true),
you're actually saying forever, and the reader of your code will have to interpret it
line by line to see what is going on and when the loop is ended by a workaround
break statement.

continue
break can be used to quit the loop, and continue can be used to move on to the next
iteration of the loop. It quits the current iteration and moves back up to check the
condition and start a new iteration.

Here you can see an example of continue:

for (let car of cars){
 if(car.color !== "black"){

Loops

[110]

 continue;
 }
 if (car.year >= 2020) {
 console.log("we could get this one:", car);
 }
}

The approach here is to just skip every car that is not black and consider all the
others that are not older than make year 2020 or later. The code will output this:

we could get this one: { model: 'Peugeot', make: '208', year: 2021,
color: 'black' }
we could get this one: { model: 'Fiat', make: 'Punto', year: 2020,
color: 'black' }

Be careful with continue in a while loop. Without running it, what do you think the
next code snippet does?

// let's only log the odd numbers to the console
let i = 1;
while (i < 50) {
 if (i % 2 === 0){
 continue;
 }
 console.log(i);
 i++;
}

It logs 1, and then it gets you stuck in an infinite loop, because continue gets hit
before the value of i changes, so it will run into continue again, and again, and so
on. This can be fixed by moving the i++ up and subtracting 1 from i, like this:

let i = 1;
while (i < 50) {
 i++;
 if ((i-1) % 2 === 0){
 continue;
 }
 console.log(i-1);
}

Chapter 5

[111]

But again, there is a better way without continue here. The chance of error is a lot
smaller:

for (let i = 1; i < 50; i = i + 2) {
 console.log(i);
}

And as you can see it is even shorter and more readable. The value of break and
continue usually comes in when you are looping over large data sets, possibly
coming from outside your application. Here you'll have less influence to apply other
types of control. Using break and continue is not a best practice for simple basic
examples, but it's a great way to get familiar with the concepts.

Practice exercise 5.8
This exercise will demonstrate how to create a string with all the digits as it loops
through them. We can also set a value to skip by adding a condition that will use
continue, skipping the matching condition. A second option is to do the same
exercise and use the break keyword.

1. Set up a string variable to use as output.
2. Select a number to skip, and set that number as a variable.
3. Create a for loop that counts to 10.
4. Add a condition to check if the value of the looped variable is equal to the

number that should be skipped.
5. If the number is to be skipped in the condition, continue to the next number.
6. As you iterate through the values, append the new count value to the end of

the main output variable.
7. Output the main variable after the loop completes.
8. Reuse the code, but change the continue to break and see the difference. It

should now stop at the skip value.

break, continue, and nested loops
break and continue can be used in nested loops as well, but it is important to know
that when break or continue is used in a nested loop, the outer loop will not break.

Loops

[112]

We will use this array of arrays to discuss break and continue in nested loops:

let groups = [
 ["Martin", "Daniel", "Keith"],
 ["Margot", "Marina", "Ali"],
 ["Helen", "Jonah", "Sambikos"],
];

Let's break down this example. We are looking for all the groups that have two
names starting with an M. If we find such a group, we will log it.

for (let i = 0; i < groups.length; i++) {
 let matches = 0;

for (let j = 0; j < groups[i].length; j++) {
 if(groups[i][j].startsWith("M")){
 matches++;
 } else {
 continue;
 }
 if (matches === 2){
 console.log("Found a group with two names starting with an M:");
 console.log(groups[i]);
 break;
 }
 }
}

We first loop over the top-level arrays and set a counter, matches, with a start value
of 0, and for each of these top-level arrays, we are going to loop over the values.
When a value starts with an M, we increase matches by one and check whether we
have found two matches already. If we find two Ms, we break out of the inner loop
and continue in our outer loop. This one will move on to the next top-level array,
since nothing is happening after the inner loop.

If the name does not start with an M, we do not need to check for matches being 2,
and we can continue to the next value in the inner array.

Take a look at this example: what do you think it will log?

for (let group of groups){
 for (let member of group){
 if (member.startsWith("M")){
 console.log("found one starting with M:", member);

Chapter 5

[113]

 break;
 }
 }
}

It will loop over the arrays, and for every array it will check the value to see if it
starts with an M. If it does, the inner loop will break. So, if one of the arrays in the
array contains multiple values starting with M, only the first one will be found,
since the iteration over that array breaks and we continue to the next array.

This one will output:

found one starting with M: Martin
found one starting with M: Margot

We can see that it finds Margot, the first one from the second array, but it skips
Marina, because it is the second one in the array. And it breaks after having found
one group, so it won't loop over the other elements in the inner array. It will continue
with the next array, which doesn't contain names starting with an M.

If we wanted to find groups that have a member with a name that starts with an M,
the previous code snippet would have been the way to go, because we are breaking
the inner loop as soon as we find a hit. This can be useful whenever you want to
make sure that an array in a data set contains at least one of something. Because of
the nature of the for of loop, it won't give the index or place where it found it. It will
simply break, and you have the value of the element of the array to use. If you need
to know more, you can work with counters, which are updated every iteration.

If we want to see whether only one of all the names in the array of arrays starts
with an M, we would have to break out of the outer loop. This is something we can
do with labeled loops.

break and continue and labeled blocks
We can break out of the outer loop from inside the inner loop, but only if we give a
label to our loop. This can be done like this:

outer:
for (let group of groups) {
 inner:
 for (let member of group) {
 if (member.startsWith("M")) {
 console.log("found one starting with M:", member);

Loops

[114]

 break outer;
 }
 }
}

We are giving our block a label by putting a word and a colon in front of a code
block. These words can be pretty much anything (in our case, "outer" and "inner"),
but not JavaScript's own reserved words, such as for, if, break, else, and others.

This will only log the first name starting with an M:

found one starting with M: Martin

It will only log one, because it is breaking out of the outer loop and all the loops end
as soon as they find one. In a similar fashion you can continue the outer loop as well.

Whenever you want to be done as soon as you find one hit, this is the option to use.
So, for example, if you want check for errors and quit if there aren't any, this would
be the way to go.

Chapter project

Math multiplication table
In this project, you will create a math multiplication table using loops. You can do
this using your own creativity or by following some of the following suggested steps:

1. Set up a blank array to contain the final multiplication table.
2. Set a value variable to specify how many values you want to multiply with

one another and show the results for.
3. Create an outer for loop to iterate through each row and a temp array to store

the row values. Each row will be an array of cells that will be nested into the
final table.

4. Add an inner for loop for the column values, which will push the multiplied
row and column values to the temp array.

5. Add the temporary row data that contains the calculated solutions to the
main array of the final table. The final result will add a row of values for the
calculations.

Chapter 5

[115]

Self-check quiz
1. What is the expected output for the following code?

let step = 3;

for (let i = 0; i < 1000; i += step) {
 if (i > 10) {
 break;
 }
 console.log(i);
}

2. What is the final value for myArray, and what is expected in the console?
const myArray = [1,5,7];
for(el in myArray){
 console.log(Number(el));
 el = Number(el) + 5;
 console.log(el);
}
console.log(myArray);

Summary
In this chapter we introduced the concept of loops. Loops enable us to repeat a
certain block of code. We need some sort of condition when we loop, and as long as
that condition is true, we'll keep looping. As soon as it changes to false, we end our
loop.

We have seen the while loop, in which we just insert a condition, and as long as
that condition is true we keep looping. If the condition is never true, we won't even
execute the loop code once.

This is different for the do while loop. We always execute the code once, and then
we start to check a condition. If this condition is true, we execute the code again and
do so until the condition becomes false. This can be useful when working with input
from outside, such as user input. We would need to request it once, and then we can
keep on requesting it again until it is valid.

Loops

[116]

Then we saw the for loop, which has a slightly different syntax. We have to specify a
variable, check a condition (preferably using that variable, but this is not mandatory),
and then specify an action to be executed after every iteration. Again, it's preferable
for the action to include the variable from the first part of the for loop. This gives us
code that is to be executed as long as a condition is true.

We also saw two ways to loop over arrays and objects, for in and for of. The for
in loop loops over keys and for of loops over values. They go over every element
in a collection. The advantage of these loops is that JavaScript controls the execution:
you can't miss an element or get stuck in an infinite loop.

Lastly, we saw break and continue. We can use the break keyword to end a loop
immediately and the continue keyword to end the current iteration and go back to
the top and start the next iteration, if the condition is still true, that is.

In the next chapter we are going to be adding a really powerful tool to our JavaScript
toolbox: functions! They allow us to take our coding skills to the next level and
structure our code better.

[117]

6
Functions

You have seen quite a lot of JavaScript already, and now you are ready for functions.
Soon you will see that you have been using functions already, but now it is time
to learn how to start writing your own. Functions are a great building block that
will reduce the amount of code you will need in your app. You can call a function
whenever you need it, and you can write it as a kind of template with variables. So,
depending on how you've written it, you can reuse it in many situations.

They do require you to think differently about the structure of your code and this
can be hard, especially in the beginning. Once you have got the hang of this way of
thinking, functions will really help you to write nicely structured, reusable, and low-
maintenance code. Let's dive into this new abstraction layer!

Along the way, we will cover the following topics:

• Basic functions
• Function arguments
• Return
• Variable scope in functions
• Recursive functions
• Nested functions
• Anonymous functions
• Function callbacks

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Functions

[118]

Basic functions
We have been calling functions for a while already. Remember prompt(), console.
log(), push(), and sort() for arrays? These are all functions. Functions are a group
of statements, variable declarations, loops, and so on that are bundled together.
Calling a function means an entire group of statements will get executed.

First, we are going to have a look at how we can invoke functions, and then we will
see how to write functions of our own.

Invoking functions
We can recognize functions by the parentheses at the end. We can invoke functions
like this:

nameOfTheFunction();
functionThatTakesInput("the input", 5, true);

This is invoking a function called nameOfTheFunction with no arguments, and a
function called functionThatTakesInput with three required arguments. Let's have
a look at what functions can look like when we start writing them.

Writing functions
Writing a function can be done using the function keyword. Here is the template
syntax to do so:

function nameOfTheFunction() {
 //content of the function
}

The above function can be called like this:

nameOfTheFunction();

Let's write a function that asks for your name and then greets you:

function sayHello() {
 let you = prompt("What's your name? ");
 console.log("Hello", you + "!");
}

Chapter 6

[119]

We add a space after the question mark to ensure the user starts typing their answer
one space away from the question mark, rather than directly afterward. We call this
function like this:

sayHello();

It will prompt:

What's your name? >

Let's go ahead and enter our name. The output will be:

Hello Maaike!

Take a moment to consider the relationship between functions and variables. As
you have seen, functions can contain variables, which shape how they operate. The
opposite is also true: variables can contain functions. Still with me? Here you can
see an example of a variable containing a function (varContainingFunction) and a
variable inside a function (varInFunction):

let varContainingFunction = function() {
 let varInFunction = "I'm in a function.";
 console.log("hi there!", varInFunction);
};

varContainingFunction();

Variables contain a certain value and are something; they do not do anything.
Functions are actions. They are a bundle of statements that can be executed when
they get called. JavaScript will not run the statements when the functions do not get
invoked. We will return to the idea of storing functions in variables, and consider
some of the benefits, in the Anonymous functions section, but for now let's move on to
look at the best way to name your functions.

Naming functions
Giving your function a name might seem like a trivial task, but there are some best
practices to keep in mind here. To keep it short:

• Use camelCase for your functions: this means that the first word starts with a
lowercase letter and new words start with a capital. That makes it a lot easier
to read and keeps your code consistent.

• Make sure that the name describes what the function is doing: it's better to
call a number addition function addNumbers than myFunc.

Functions

[120]

• Use a verb to describe what the function is doing: make it an action. So
instead of hiThere, call it sayHi.

Practice exercise 6.1
See if you can write a function for yourself. We want to write a function that adds
two numbers.

1. Create a function that takes two parameters, adds the parameters together,
and returns the result.

2. Set up two different variables with two different values.
3. Use your function on the two variables, and output the result using

console.log.
4. Create a second call to the function using two more numbers as arguments

sent to the function.

Practice exercise 6.2
We are going to create a program that will randomly describe an inputted name.

1. Create an array of descriptive words.
2. Create a function that contains a prompt asking the user for a name.
3. Select a random value from the array using Math.random.
4. Output into the console the prompt value and the randomly selected array

value.
5. Invoke the function.

Parameters and arguments
You may have noticed that we are talking about parameters and arguments. Both
terms are commonly used to mean the information that is passed into a function:

function tester(para1, para2){
 return para1 + " " + para2;
}
const arg1 = "argument 1";
const arg2 = "argument 2";
tester(arg1, arg2);

Chapter 6

[121]

A parameter is defined as the variable listed inside the parentheses of the function
definition, which defines the scope of the function. They are declared like so:

function myFunc(param1, param2) {
 // code of the function;
}

A practical example could be the following, which takes x and y as parameters:

function addTwoNumbers(x, y) {
 console.log(x + y);
}

When called, this function will simply add the parameters and log the result.
However, to do this, we can call the function with arguments:

myFunc("arg1", "arg2");

We have seen various examples of arguments; for example:

console.log("this is an argument");
prompt("argument here too");

let arr = [];
arr.push("argument");

Depending on the arguments you are calling with the function, the outcome of the
function can change, which makes the function a very powerful and flexible building
block. A practical example using our addTwoNumbers() function looks like this:

addTwoNumbers(3, 4);
addTwoNumbers(12,-90);

This will output:

7
-78

As you can see, the function has a different outcome for both calls. This is because
we call it with different arguments, which take the place of x and y, that are sent to
the function to be used within the function scope.

Functions

[122]

Practice exercise 6.3
Create a basic calculator that takes two numbers and one string value indicating
an operation. If the operation equals add, the two numbers should be added. If the
operation equals subtract, the two numbers should be subtracted from one another.
If there is no option specified, the value of the option should be add.

The result of this function needs to be logged. Test your function by invoking it
with different operators and no operator specified.

1. Set up two variables containing number values.
2. Set up a variable to hold an operator, either + or -.
3. Create a function that retrieves the two values and the operator string value

within its parameters. Use those values with a condition to check if the
operator is + or -, and add or subtract the values accordingly (remember if
not presented with a valid operator, the function should default to addition).

4. Within console.log(), call the function using your variables and output
the response to the console.

5. Update the operator value to be the other operator type—either plus or
minus—and call to the function again with the new updated arguments.

Default or unsuitable parameters
What happens if we call our addTwoNumbers() function without any arguments?
Take a moment and decide what you think this should do:

addTwoNumbers();

Some languages might crash and cry, but not JavaScript. JavaScript just gives the
variables a default type, which is undefined. And undefined + undefined equals:

NaN

Instead, we could tell JavaScript to take different default parameters. And that can
be done like this:

function addTwoNumbers(x = 2, y = 3) {
 console.log(x + y);
}

Chapter 6

[123]

If you call the function with no arguments now, it will automatically assign 2 to x
and 3 to y, unless you override them by calling the function with arguments. The
values that are used for invoking are prioritized over hardcoded arguments. So,
given the above function, what will the output of these function calls be?

addTwoNumbers();
addTwoNumbers(6, 6);
addTwoNumbers(10);

The output will be:

5
12
13

The first one has the default values, so x is 2 and y is 3. The second one assigns 6 to
both x and y. The last one is a bit less obvious. We are only giving one argument, so
which one will be given this value? Well, JavaScript does not like to overcomplicate
things. It simply assigns the value to the first parameter, x. Therefore, x becomes 10
and y gets its default value 3, and together that makes 13.

If you call a function with more arguments than parameters, nothing will happen.
JavaScript will just execute the function using the first arguments that can be
mapped to parameters. Like this:

addTwoNumbers(1,2,3,4);

This will output:

3

It is just adding 1 and 2 and ignoring the last two arguments (3 and 4).

Special functions and operators
There are a few special ways of writing functions, as well as some special operators
that will come in handy. We are talking about arrow functions and the spread and
rest operators here. Arrow functions are great for sending functions around as
parameters and using shorter notations. The spread and rest operators make our
lives easier and are more flexible when sending arguments and working with arrays.

Functions

[124]

Arrow functions
Arrow functions are a special way of writing functions that can be confusing at first.
Their use looks like this:

(param1, param2) => body of the function;

Or for no parameters:

() => body of the function;

Or for one parameter (no parentheses are needed here):

param => body of the function;

Or for a multiline function with two parameters:

(param1, param2) => {
 // line 1;
 // any number of lines;
};

Arrow functions are useful whenever you want to write an implementation on the
spot, such as inside another function as an argument. This is because they are a
shorthand notation for writing functions. They are most often used for functions that
consist of only one statement. Let's start with a simple function that we will rewrite
to an arrow function:

function doingStuff(x) {
 console.log(x);
}

To rewrite this as an arrow function, you will have to store it in a variable or send it
in as an argument if you want to be able to use it. We use the name of the variable to
execute the arrow function. In this case we only have one parameter, so it's optional
to surround it with parentheses. We can write it like this:

let doingArrowStuff = x => console.log(x);

And invoke it like this:

doingArrowStuff("Great!");

Chapter 6

[125]

This will log Great! to the console. If there is more than one argument, we will have
to use parentheses, like this:

let addTwoNumbers = (x, y) => console.log(x + y);

We can call it like this:

addTwoNumbers(5, 3);

And then it will log 8 to the console. If there are no arguments, you must use the
parentheses, like this:

let sayHi = () => console.log("hi");

If we call sayHi(), it will log hi to the console.

As a final example, we can combine the arrow function with certain built-in methods.
For example, we can use the foreach() method on an array. This method executes a
certain function for every element in the array. Have a look at this example:

const arr = ["squirrel", "alpaca", "buddy"];
arr.forEach(e => console.log(e));

It outputs:

squirrel
alpaca
buddy

For every element in the array, it takes the element as input and executing the arrow
function for it. In this case, the function is to log the element. So the output is every
single element in the array.

Using arrow functions combined with built-in functions is very powerful. We can do
something for every element in the array, without counting or writing a complicated
loop. We'll see more examples of great use cases for arrow functions later on.

Spread operator
The spread operator is a special operator. It consists of three dots used before a
referenced expression or string, and it spreads out the arguments or elements of an
array.

Functions

[126]

This might sound very complicated, so let's look at a simple example:

let spread = ["so", "much", "fun"];
let message = ["JavaScript", "is", ...spread, "and", "very",
 "powerful"];

The value of this array becomes:

['JavaScript', 'is', 'so', 'much', 'fun', 'and', 'very', 'powerful']

As you can see, the elements of the spread operator become individual elements in
the array. The spread operator spreads the array to individual elements in the new
array. It can also be used to send multiple arguments to a function, like this:

function addTwoNumbers(x, y) {
 console.log(x + y);
}
let arr = [5, 9];
addTwoNumbers(...arr);

This will log 14 to the console, since it is the same as calling the function with:

addTwoNumbers(5, 9);

This operator avoids having to copy a long array or string into a function, which
saves time and reduces code complexity. You can call a function with multiple
spread operators. It will use all the elements of the arrays as input. Here's an
example:

function addFourNumbers(x, y, z, a) {
 console.log(x + y + z + a);
}
let arr = [5, 9];
let arr2 = [6, 7];
addFourNumbers(...arr, ...arr2);

This will output 27 to the console, calling the function like this:

addFourNumbers(5, 9, 6, 7);

Chapter 6

[127]

Rest parameter
Similar to the spread operator, we have the rest parameter. It has the same symbol as
the spread operator, but it is used inside the function parameter list. Remember what
would happen if we were to send an argument too many times, as here:

function someFunction(param1, param2) {
 console.log(param1, param2);
}
someFunction("hi", "there!", "How are you?");

That's right. Nothing really: it would just pretend we only sent in two arguments and
log hi there!. If we use the rest parameter, it allows us to send in any number of
arguments and translate them into a parameter array. Here is an example:

function someFunction(param1, ...param2) {
 console.log(param1, param2);
}
someFunction("hi", "there!", "How are you?");

This will log:

hi ['there!', 'How are you?']

As you can see, the second parameter has changed into an array, containing our
second and third arguments. This can be useful whenever you are not sure what
number of arguments you will get. Using the rest parameter allows you to process
this variable number of arguments, for example, using a loop.

Returning function values
We are still missing a very important piece to make functions as useful as they are:
the return value. Functions can give back a result when we specify a return value.
The return value can be stored in a variable. We have done this already – remember
prompt()?

let favoriteSubject = prompt("What is your favorite subject?");

Functions

[128]

We are storing the result of our prompt() function in the variable favoriteSubject,
which in this case would be whatever the user specifies. Let's see what happens if we
store the result of our addTwoNumbers() function and log that variable:

let result = addTwoNumbers(4, 5);
console.log(result);

You may or may not have guessed it—this logs the following:

9
undefined

The value 9 is written to the console because addTwoNumbers() contains a
console.log() statement. The console.log(result) line outputs undefined, because
nothing is inserted into the function to store the result, meaning our function
addTwoNumbers() does not send anything back. Since JavaScript does not like to
cause trouble and crash, it will assign undefined. To counter this, we can rewrite
our addTwoNumbers() function to actually return the value instead of logging it. This
is much more powerful because we can store the result and continue working with
the result of this function in the rest of our code:

function addTwoNumbers(x, y) {
 return x + y;
}

return ends the function and sends back whatever value comes after return. If it is
an expression, like the one above, it will evaluate the expression to one result and
then return that to where it was called (the result variable, in this instance):

let result = addTwoNumbers(4, 5);
console.log(result);

With these adjustments made, the code snippet logs 9 to the terminal.

What do you think this code does?

let resultsArr = [];

for(let i = 0; i < 10; i ++){
 let result = addTwoNumbers(i, 2*i);
 resultsArr.push(result);
}

console.log(resultsArr);

Chapter 6

[129]

It logs an array of all the results to the screen. The function is being called in a loop.
The first iteration, i, equals 0. Therefore, the result is 0. The last iteration, i, equals 9,
and therefore the last value of the array equals 27. Here are the results:

[
 0, 3, 6, 9, 12,
 15, 18, 21, 24, 27
]

Practice exercise 6.4
Modify the calculator that you made in Practice exercise 6.2 to return added values
instead of printing them. Then, call the function 10 or more times in a loop, and store
the results in an array. Once the loop finishes, output the final array into the console.

1. Set up an empty array to store the values that will be calculated within the
loop.

2. Create a loop that runs 10 times, incrementing by 1 each time, creating two
values each iteration. For the first value, multiply the value of the loop count
by 5. For the second value, multiply the value of the loop counter by itself.

3. Create a function that returns the value of the two parameters passed into the
function when it is called. Add the values together, returning the result.

4. Within the loop, call the calculation function, passing in the two values as
arguments into the function and storing the returned result in a response
variable.

5. Still within the loop, push the result values into the array as it iterates
through the loop.

6. After the loop is complete, output the value of the array into the console.
7. You should see the values [0, 6, 14, 24, 36, 50, 66, 84, 104, 126] for

the array in the console.

Returning with arrow functions
If we have a one-line arrow function, we can return without using the keyword
return. So if we want to rewrite the function, we can write it like this to make an
arrow function out of it:

let addTwoNumbers = (x, y) => x + y;

Functions

[130]

And we can call it and store the result like this:

let result = addTwoNumbers(12, 15);
console.log(result);

This will then log 27 to the console. If it's a multiline function, you will have to use
the keyword return as demonstrated in the previous section. So, for example:

let addTwoNumbers = (x, y) => {
 console.log("Adding...");
 return x + y;
}

Variable scope in functions
In this section, we will discuss a topic that is often considered challenging. We will
talk about scope. Scope defines where you can access a certain variable. When a
variable is in scope, you can access it. When a variable is out of scope, you cannot
access the variable. We will discuss this for both local and global variables.

Local variables in functions
Local variables are only in scope within the function they are defined. This is true
for let variables and var variables. There is a difference between them, which we
will touch upon here as well. The function parameters (they do not use let or var)
are also local variables. This might sound very vague, but the next code snippet will
demonstrate what this means:

function testAvailability(x) {
 console.log("Available here:", x);
}

testAvailability("Hi!");
console.log("Not available here:", x);

This will output:

Available here: Hi!
ReferenceError: x is not defined

When called inside the function, x will be logged. The statement outside of the
function fails, because x is a local variable to the function testAvailability(). This is
showing that the function parameters are not accessible outside of the function.

Chapter 6

[131]

They are out of scope outside the function and in scope inside the function. Let's
have a look at a variable defined inside a function:

function testAvailability() {
 let y = "Local variable!";
 console.log("Available here:", y);
}

testAvailability();
console.log("Not available here:", y);

This shows the following on the console:

Available here: Local variable!
ReferenceError: y is not defined

Variables defined inside the function are not available outside the function either.

For beginners, it can be confusing to combine local variables and return. Right now,
we're telling you the local variables declared inside a function are not available
outside of the function, but with return you can make their values available outside
the function. So if you need their values outside a function, you can return the
values. The key word here is values! You cannot return the variable itself. Instead, a
value can be caught and stored in a different variable, like this:

function testAvailability() {
 let y = "I'll return";
 console.log("Available here:", y);
 return y;
}

let z = testAvailability();
console.log("Outside the function:", z);
console.log("Not available here:", y);

So, the returned value I'll return that was assigned to local variable y gets
returned and stored in variable z.

This variable z could actually also have been called y, but that
would have been confusing since it still would have been a
different variable.

Functions

[132]

The output of this code snippet is as follows:

Available here: I'll return
Outside the function: I'll return
ReferenceError: y is not defined

let versus var variables
The difference between let and var is that var is function-scoped, which is the
concept we described above. let is actually not function-scoped but block-scoped. A
block is defined by two curly braces { }. The code within those braces is where let is
still available.

Let's see this distinction in action:

function doingStuff() {
 if (true) {
 var x = "local";
 }
 console.log(x);
}

doingStuff();

The output of this snippet will be:

local

If we use var, the variable becomes function-scoped and is available anywhere in the
function block (even before defining with the value undefined). Thus, after the if
block has ended, x can still be accessed.

Here is what happens with let:

function doingStuff() {
 if (true) {
 let x = "local";
 }
 console.log(x);
}

doingStuff();

This will produce the following output:

ReferenceError: x is not defined

Chapter 6

[133]

Here we get the error that x is not defined. Since let is only block-scoped, x goes
out of scope when the if block ends and can no longer be accessed after that.

A final difference between let and var relates to the order of declaration in a script.
Try using the value of x before having defined it with let:

function doingStuff() {
 if (true) {
 console.log(x);
 let x = "local";
 }
}

doingStuff();

This will give a ReferenceError that x is not initialized. This is because variables
declared with let cannot be accessed before being defined, even within the same
block. What do you think will happen for a var declaration like this?

function doingStuff() {
 if (true) {
 console.log(x);
 var x = "local";
 }
}

doingStuff();

This time, we won't get an error. When we use a var variable before the define
statement, we simply get undefined. This is due to a phenomenon called hoisting,
which means using a var variable before it's been declared results in the variable
being undefined rather than giving a ReferenceError.

const scope
Constants are block-scoped, just like let. This is why the scope rules here are similar
to those for let. Here is an example:

function doingStuff() {
 if (true) {

Hoisting, and how to negate its effects if needed, are more complex
topics that we will cover in Chapter 12, Intermediate JavaScript.

Functions

[134]

 const X = "local";
 }
 console.log(X);
}

doingStuff();

This will produce the following output:

ReferenceError: X is not defined

Using a const variable before having defined it will also give a ReferenceError, just
as it does for a let variable.

Global variables
As you might have guessed, global variables are variables declared outside a
function and not in some other code block. Variables are accessible in the scope
(either function or block) where they're defined, plus any "lower" scopes. So, a
variable defined outside of a function is available within the function as well as
inside any functions or other code blocks inside that function. A variable defined at
the top level of your program is therefore available everywhere in your program.
This concept is called a global variable. You can see an example here:

let globalVar = "Accessible everywhere!";
console.log("Outside function:", globalVar);

function creatingNewScope(x) {
 console.log("Access to global vars inside function." , globalVar);
}

creatingNewScope("some parameter");

console.log("Still available:", globalVar);

This will output:

Outside function: Accessible everywhere!
Access to global vars inside function. Accessible everywhere!
Still available: Accessible everywhere!

Chapter 6

[135]

As you can see, global variables are accessible from everywhere because they are not
declared in a block. They are always in scope after they have been defined—it doesn't
matter where you use them. However, you can hide their accessibility inside a
function by specifying a new variable with the same name inside that scope; this can
be done for let, var, and const. (This is not changing the value of the const variable;
you are creating a new const variable that is going to override the first one in the
inner scope.) In the same scope, you cannot specify two let or two const variables
with the same name. You can do so for var, but you shouldn't do so, in order to
avoid confusion.

If you create a variable with the same name inside a function, that variable's value
will be used whenever you refer to that variable name within the scope of that
particular function. Here you can see an example:

let x = "global";

function doingStuff() {
 let x = "local";
 console.log(x);
}

doingStuff();
console.log(x);

This will output:

local
global

As you can see, the value of x inside the doingStuff() function is local. However,
outside the function the value is still global. This means that you'll have to be extra
careful about mixing up names in local and global scopes. It is usually better to
avoid this.

The same is also true for parameter names. If you have the same parameter name as
a global variable, the value of the parameter will be used:

let x = "global";

function doingStuff(x) {
 console.log(x);
}

doingStuff("param");

Functions

[136]

This will log param.

There is a danger in relying on global variables too much. This is something you
will come across soon when your applications grow. As we just saw, local variables
override the value of global variables. It is best to work with local variables in
functions; this way, you have more control over what you are working with. This
might be a bit vague for now, but it will become clear when coding in the wild as
things get bigger and more lines and files of code get involved.

There is only one more very important point to be made about scopes for now.
Let's start with an example and see if you can figure out what this should log:

function confuseReader() {
 x = "Guess my scope...";
 console.log("Inside the function:", x);
}

confuseReader();
console.log("Outside of function:", x);

Answer ready? Here is the output:

Inside the function: Guess my scope...
Outside of function: Guess my scope...

Do not close the book—we'll explain what is going on. If you look carefully, the x in
the function gets defined without the keyword let or var. There is no declaration of
x above the code; this is all the code of the program. JavaScript does not see let or
var and then decides, "this must be a global variable." Even though it gets defined
inside the function, the declaration of x within the function gets global scope and can
still be accessed outside of the function.

We really want to emphasize that this is a terrible practice. If you need a global
variable, declare it at the top of your file.

Immediately invoked function expression
The immediately invoked function expression (IIFE) is a way of expressing a
function so that it gets invoked immediately. It is anonymous, it doesn't have a
name, and it is self-executing.

This can be useful when you want to initialize something using this function. It is
also used in many design patterns, for example, to create private and public variables
and functions.

Chapter 6

[137]

This has to do with where functions and variables are accessible from. If you have an
IIFE in the top-level scope, whatever is in there is not accessible from outside even
though it is top level.

Here is how to define it:

(function () {
 console.log("IIFE!");
})();

The function itself is surrounded by parentheses, which makes it create a function
instance. Without these parentheses around it, it would throw an error because our
function does not have a name (this is worked around by assigning the function to a
variable, though, where the output can be returned to the variable).

(); executes the unnamed function—this must be done immediately following a
function declaration. If your function were to require a parameter, you would pass it
in within these final brackets.

You could also combine IIFE with other function patterns. For example, you could
use an arrow function here to make the function even more concise:

(()=>{
 console.log("run right away");
})();

Again, we use (); to invoke the function that you created.

Practice exercise 6.5
Use IIFE to create a few immediately invoked functions and observe how the scope is
affected.

1. Create a variable value with let and assign a string value of 1000 to it.
2. Create an IIFE function and within this function scope assign a new value to

a variable of the same name. Within the function, print the local value to the
console.

3. Create an IIFE expression, assigning it to a new result variable, and assign
a new value to a variable of the same name within this scope. Return this
local value to the result variable and invoke the function. Print the result
variable, along with the variable name you've been using: what value does it
contain now?

Functions

[138]

4. Lastly, create an anonymous function that has a parameter. Add logic that
will assign a passed-in value to the same variable name as the other steps,
and print it as part of a string sentence. Invoke the function and pass in your
desired value within the rounded brackets.

Recursive functions
In some cases, you want to call the same function from inside the function. It can be
a beautiful solution to rather complex problems. There are some things to keep in
mind though. What do you think this will do?

function getRecursive(nr) {
 console.log(nr);
 getRecursive(--nr);
}

getRecursive(3);

It prints 3 and then counts down and never stops. Why is it not stopping? Well, we
are not saying when it should stop. Look at our improved version:

function getRecursive(nr) {
 console.log(nr);
 if (nr > 0) {
 getRecursive(--nr);
 }
}

getRecursive(3);

This function is going to call itself until the value of the parameter is no longer
bigger than 0. And then it stops.

What happens when we call a function recursively is that it goes one function deeper
every time. The first function call is done last. For this function it goes like this:

• getRecursive(3)

• getRecursive(2)

• getRecursive(1)

• getRecursive(0)

• done with getRecursive(0) execution

Chapter 6

[139]

• done with getRecursive(1) execution
• done with getRecursive(2) execution

• done with getRecursive(3) execution
The next recursive function will demonstrate that:

function logRecursive(nr) {
 console.log("Started function:", nr);
 if (nr > 0) {
 logRecursive(nr - 1);
 } else {
 console.log("done with recursion");
 }
 console.log("Ended function:", nr);
}

logRecursive(3);

It will output:

Started function: 3
Started function: 2
Started function: 1
Started function: 0
done with recursion
Ended function: 0
Ended function: 1
Ended function: 2
Ended function: 3

Recursive functions can be great in some contexts. When you feel the need to call
the same function over and over again in a loop, you should probably consider
recursion. An example could also be searching for something. Instead of looping
over everything inside the same function, you can split up inside the function and
call the function repeatedly from the inside.

However, it must be kept in mind that in general, the performance of recursion is
slightly worse than the performance of regular iteration using a loop. So if this causes
a bottleneck situation that would really slow down your application, then you might
want to consider another approach.

Have a look at calculating the factorial using recursive functions in the following
exercise.

Functions

[140]

Practice exercise 6.6
A common problem that we can solve with recursion is calculating the factorial.

How are recursive functions going to help us calculate the factorial? We are going to
call the function with a lower number until we reach 0. In this exercise, we will use
recursion to calculate the factorial result of a numeric value set as the argument of a
function.

1. Create a function that contains a condition within it checking if the argument
value is 0.

2. If the parameter is equal to 0, it should return the value of 1. Otherwise, it
should return the value of the argument multiplied by the value returned
from the function itself, subtracting one from the value of the argument
that is provided. This will result in running the block of code until the value
reaches 0.

3. Invoke the function, providing an argument of whatever number you want
to find the factorial of. The code should run whatever number is passed
initially into the function, decreasing all the way to 0 and outputting the
results of the calculation to the console. It could also contain a console.log()
call to print the current value of the argument in the function as it gets
invoked.

4. Change and update the number to see how it affects the results.

Nested functions
Just as with loops, if statements, and actually all other building blocks, we can have
functions inside functions. This phenomenon is called nested functions:

function doOuterFunctionStuff(nr) {
 console.log("Outer function");
 doInnerFunctionStuff(nr);
 function doInnerFunctionStuff(x) {
 console.log(x + 7);

Quick mathematics refresher about factorials:

The factorial of a number is the product of all positive integers
bigger than 0, up to the number itself. So for example, the factorial
of seven is 7 * 6 * 5 * 4 * 3 * 2 * 1. You can write this as 7!.

Chapter 6

[141]

 console.log("I can access outer variables:", nr);
 }
}
doOuterFunctionStuff(2);

This will output:

Outer function
9
I can access outer variables: 2

As you can see, the outer function is calling its nested function. This nested function
has access to the variables of the parent. The other way around, this is not the case.
Variables defined inside the inner function have function scope. This means they are
accessible inside the function where they are defined, which is in this case the inner
function. Thus, this will throw a ReferenceError:

function doOuterFunctionStuff(nr) {
 doInnerFunctionStuff(nr);
 function doInnerFunctionStuff(x) {
 let z = 10;
 }
 console.log("Not accessible:", z);
}

doOuterFunctionStuff(2);

What do you think this will do?

function doOuterFunctionStuff(nr) {
 doInnerFunctionStuff(nr);
 function doInnerFunctionStuff(x) {
 let z = 10;
 }
}

doInnerFunctionStuff(3);

This will also throw a ReferenceError. Now, doInnerFunctionStuff() is
defined inside the outer function, which means that it is only in scope inside
doOuterFunctionStuff(). Outside this function, it is out of scope.

Functions

[142]

Practice exercise 6.7
Create a countdown loop starting at a dynamic value of 10.

1. Set the start variable at a value of 10, which will be used as the starting
value for the loop.

2. Create a function that takes one argument, which is the countdown value.
3. Within the function, output the current value of the countdown into the

console.
4. Add a condition to check if the value is less than 1; if it is, then return the

function.
5. Add a condition to check if the value of the countdown is not less than 1,

then continue to loop by calling the function within itself.
6. Make sure you add a decrement operator on the countdown so the preceding

condition eventually will be true to end the loop. Every time it loops, the
value will decrease until it reaches 0.

7. Update and create a second countdown using a condition if the value is
greater than 0. If it is, decrease the value of the countdown by 1.

8. Use return to return the function, which then invokes it again and again
until the condition is no longer true.

9. Make sure, when you send the new countdown value as an argument into
the function, that there is a way out of the loop by using the return keyword
and a condition that continues the loop if met.

Anonymous functions
So far, we have been naming our functions. We can also create functions without
names if we store them inside variables. We call these functions anonymous. Here is
a non-anonymous function:

function doingStuffAnonymously() {
 console.log("Not so secret though.");
}

Here is how to turn the previous function into an anonymous function:

function () {
 console.log("Not so secret though.");
};

Chapter 6

[143]

As you can see, our function has no name. It is anonymous. So you may wonder how
you can invoke this function. Well actually, you can't like this!

We will have to store it in a variable in order to call the anonymous function; we can
store it like this:

let functionVariable = function () {
 console.log("Not so secret though.");
};

An anonymous function can be called using the variable name, like this:

functionVariable();

It will simply output Not so secret though..

This might seem a bit useless, but it is a very powerful JavaScript construct. Storing
functions inside variables enables us to do very cool things, like passing in functions
as parameters. This concept adds another abstract layer to coding. This concept is
called callbacks, and we will discuss it in the next section.

Practice exercise 6.8
1. Set a variable name and assign a function to it. Create a function expression

with one parameter that outputs a provided argument to the console.
2. Pass an argument into the function.
3. Create the same function as a normal function declaration.

Function callbacks
Here is an example of passing a function as an argument to another function:

function doFlexibleStuff(executeStuff) {
 executeStuff();
 console.log("Inside doFlexibleStuffFunction.");
}

If we call this new function with our previously made anonymous function,
functionVariable, like this:

doFlexibleStuff(functionVariable);

Functions

[144]

It will output:

Not so secret though.
Inside doFlexibleStuffFunction.

But we can also call it with another function, and then our doFlexibleStuff function
will execute this other function. How cool is that?

let anotherFunctionVariable = function() {
 console.log("Another anonymous function implementation.");
}

doFlexibleStuff(anotherFunctionVariable);

This will produce the following output:

Another anonymous function implementation.
Inside doFlexibleStuffFunction.

So what happened? We created a function and stored it in the
anotherFunctionVariable variable. We then sent that in as a function parameter to
our doFlexibleStuff() function. And this function is simply executing whatever
function gets sent in.

At this point you may wonder why the writers are so excited about this callback
concept. It probably looks rather lame in the examples you have seen so far. Once we
get to asynchronous functions later on, this concept is going to be of great help. To
still satisfy your need for a more concrete example, we will give you one.

In JavaScript, there are many built-in functions, as you may know by now. One
of them is the setTimeout() function. It is a very special function that is executing
a certain function after a specified amount of time that it will wait first. It is also
seemingly responsible for quite a few terribly performing web pages, but that is
definitely not the fault of this poor misunderstood and misused function.

This code is really something you should try to understand:

let youGotThis = function () {
 console.log("You're doing really well, keep coding!");
};

setTimeout(youGotThis, 1000);

Chapter 6

[145]

It is going to wait for 1000ms (one second) and then print:

You're doing really well, keep coding!

If you need more encouragement, you can use the setInterval() function instead.
It works very similarly, but instead of executing the specified function once, it will
keep on executing it with the specified interval:

setInterval(youGotThis, 1000);

In this case, it will print our encouraging message every second until you kill the
program.

This concept of the function executing the function after having been called itself is
very useful for managing asynchronous program execution.

Chapter projects

Create a recursive function
Create a recursive function that counts up to 10. Invoke the function with different
start numbers as the arguments that are passed into the function. The function
should run until the value is greater than 10.

Set timeout order
Use the arrow format to create functions that output the values one and two to the
console. Create a third function that outputs the value three to the console, and then
invokes the first two functions.

Create a fourth function that outputs the word four to the console and also use
setTimeout() to invoke the first function immediately and then the third function.

What does your output look like in the console? Try to get the console to output:

Four
Three
One
Two
One

Functions

[146]

Self-check quiz
1. What value is output into the console?

let val = 10;
function tester(val){
 val += 10;
 if(val < 100){
 return tester(val);
 }
 return val;
}
tester(val);
console.log(val);

2. What will be output into the console by the below code?
let testFunction = function(){
 console.log("Hello");
}();

3. What will be output to the console?
(function () {
 console.log("Welcome");
})();
(function () {
 let firstName = "Laurence";
})();
let result = (function () {
 let firstName = "Laurence";
 return firstName;
})();
console.log(result);
(function (firstName) {
 console.log("My Name is " + firstName);
})("Laurence");

4. What will be output to the console?
let test2 = (num) => num + 5;
console.log(test2(14));

Chapter 6

[147]

5. What will be output to the console?

var addFive1 = function addFive1(num) {
return num + 2;
};
let addFive2 = (num) => num + 2;
console.log(addFive1(14));

Summary
In this chapter, we have covered functions. Functions are a great JavaScript building
block that we can use to reuse lines of code. We can give our functions parameters,
so that we can change the code depending on the arguments a function gets invoked
with. Functions can return a result; we do so using the return keyword. And we can
use return at the place where we call a function. We can store the result in a variable
or use it in another function, for example.

We then met with variable scopes. The scope entails the places from where variables
are accessible. Default let and const variables can be accessed inside the block
where they're defined (and the inner blocks of that block) and var is just accessible
from the line where it was defined.

We can also use recursive functions to elegantly solve problems that can be solved
recursively by nature, such as calculating the factorial. Nested functions were the
next topic we studied. They are not a big deal, just functions inside functions. Basic
functions inside functions are not considered very pretty, but anonymous functions
and arrow functions are not uncommon to see. Anonymous functions are functions
without a name and arrow functions are a special case of anonymous functions,
where we use an arrow to separate the parameters and the body.

In the next chapter, we'll consider classes, another powerful programming construct!

[149]

7
Classes

In this chapter, we are going to discuss JavaScript classes. We have seen JavaScript
objects already, and classes are a blueprint or template for object creation. So, many
of the things discussed here should not sound too unfamiliar or revolutionary.

Classes enable object-oriented programming, which was one of the most important
design advancements in software development. This development reduced the
complexity of applications and increased maintainability by a huge margin.

So, object-oriented programming and classes are of great importance for computer
science in general. This is not necessarily the case when we apply it to JavaScript
though. JavaScript classes are something special compared to other programming
languages. Beneath the surface, classes are wrapped in some sort of special function.
This means that they are actually an alternative syntax for defining objects using a
constructor function. In this chapter, we will learn what classes are and how we can
create and use them. Along the way, we will cover the following topics:

• Object-oriented programming
• Classes and objects
• Classes
• Inheritance
• Prototypes

Note: exercise, project, and self-check quiz answers can be found in
the Appendix.

Classes

[150]

Object-oriented programming
Before we start diving right into the fun of classes, let's briefly say something about
object-oriented programming (OOP). OOP is a very important programming
paradigm wherein code is structured in objects, leading to more maintainable and
reusable code. Working with OOP teaches you to really try to think of all sorts of
topics in objects, by bundling properties in such a way that they can be wrapped
in a blueprint called a class. This in turn might be inheriting properties from a
parent class.

For example, if we are thinking of an animal, we can come up with certain
properties: name, weight, height, maximum speed, colors, and a lot more. And then
if we think of a specific species of fish, we can reuse all the properties of "animal"
and add a few fish-specific properties in there as well. The same for dogs; if we then
think of a dog, we can reuse all the properties of "animal" and add a few dog-specific
ones to it. This way we have reusable code of our animal class. And when we realize
we forgot a very important property for the many animals in our application, we
only need to add it to the animal class.

This is very important for Java, .NET, and other classic object-oriented ways of
writing code. JavaScript doesn't necessarily revolve around objects. We will need
them and we will use them, but they are not the star of our code, so to speak.

Classes and objects
As a quick refresher, objects are a collection of properties and methods. We saw
them in Chapter 3, JavaScript Multiple Values. The properties of an object should have
sensible names. So for example, if we have a person object, this object could have
properties called age and lastName that contain values. Here is an example of an
object:

let dog = { dogName: "JavaScript",
 weight: 2.4,
 color: "brown",
 breed: "chihuahua"
 };

Classes in JavaScript encapsulate data and functions that are part of that class. If you
create a class, you can later create objects using that class using the following syntax:

class ClassName {
 constructor(prop1, prop2) {
 this.prop1 = prop1;

Chapter 7

[151]

 this.prop2 = prop2;
 }
}

let obj = new ClassName("arg1", "arg2");

This code defines a class with ClassName as a name, declares an obj variable, and
initializes this with a new instance of the object. Two arguments are provided. These
arguments will be used by the constructor to initialize the properties. As you can
see, the parameters of the constructor and the properties of the class (prop1 and
prop2) have the same name. The properties of the class can be recognized by the
this keyword in front of them. The this keyword refers to the object it belongs to,
so it is the first property of the instance of ClassName.

Remember we said that classes are just some special function beneath the surface.
We could create the object with a special function like this:

function Dog(dogName, weight, color, breed) {
 this.dogName = dogName;
 this.weight = weight;
 this.color = color;
 this.breed = breed;
}

let dog = new Dog("Jacky", 30, "brown", "labrador");

The dog example could have been made using a class syntax as well. It would have
looked like this:

class Dog {
 constructor(dogName, weight, color, breed) {
 this.dogName = dogName;
 this.weight = weight;
 this.color = color;
 this.breed = breed;
 }
}

let dog = new Dog("JavaScript", 2.4, "brown", "chihuahua");

Classes

[152]

This results in an object with the same properties. If we do some logging as follows,
we will be able to see it:

console.log(dog.dogName, "is a", dog.breed, "and weighs", dog.weight,
"kg.");

This will output:

JavaScript is a chihuahua and weighs 2.4 kg.

In the next section, we will dive into all the parts of classes.

Classes
You may wonder, if classes do the exact same thing as simply defining an object,
why do we even need classes? The answer is that classes are essentially blueprints
for object creation. This means that we need to do much less typing if we need
to create 20 dogs when we have a dog class. If we have to create the objects, we
will have to specify all the properties' names each time. And it would be easy to
make a typo and misspell a property name. Classes come in handy in these sorts
of situations.

As shown in the previous section, we use the class keyword to tell JavaScript we
want to create a class. Next, we give the class a name. It is the convention to start
class names with a capital letter.

Let's have a look at all the different elements of a class.

Constructors
The constructor method is a special method that we use to initialize objects with
our class blueprint. There can only be one constructor in a class. This constructor
contains properties that will be set when initiating the class.

Here you can see an example of a constructor in a Person class:

class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }
}

Chapter 7

[153]

Beneath the surface, JavaScript creates a special function based on this constructor.
This function gets the class name, and it will create an object with the given
properties. With this special function, you can create instances (objects) of the class.

Here is how you can create a new object from the Person class:

let p = new Person("Maaike", "van Putten");

The new word is what tells JavaScript to look for the special constructor function in
the Person class and create a new object. The constructor gets called and returns an
instance of the person object with the specified properties. This object gets stored in
the p variable.

If we use our new p variable in a logging statement, you can see that the properties
are really set:

console.log("Hi", p.firstname);

This outputs:

Hi Maaike

What do you think will happen when we create a class without all of the properties?
Let's find out:

let p = new Person("Maaike");

Many languages would crash, but not JavaScript. It just sets the remaining properties
to undefined. You can see what happens by logging it:

console.log("Hi", p.firstname, p.lastname);

This results in:

Hi Maaike undefined

You can specify default values in constructor. You would do it like this:

constructor(firstname, lastname = "Doe") {
 this.firstname = firstname;
 this.lastname = lastname;
 }

This way, it would not have printed Hi Maaike undefined, but Hi Maaike Doe.

Classes

[154]

Practice exercise 7.1
Take the following steps to create a person class, and print instances of friends'
names:

1. Create a class for Person including the constructor for firstname and
lastname.

2. Create a variable and assign a value of the new Person object using your
friend's first and last names.

3. Now add a second variable with another friend's name using their first name
and last name.

4. Output both friends into the console with a greeting of hello.

Methods
In a class, we can specify functions. This means that our object can start doing things
using the object's own properties—for example, printing a name. Functions on a
class are called methods. When defining these methods, we don't use the function
keyword. We start directly with the name:

class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }

 greet() {
 console.log("Hi there! I'm", this.firstname);
 }
}

We can call the greet method on a Person object like this:

let p = new Person("Maaike", "van Putten");
p.greet();

It will output:

Hi there! I'm Maaike

Chapter 7

[155]

You can specify as many methods on a class as you want. In this example, we are
using the firstname property. We do so by saying this.property. If we had a person
with a different value for the firstname property, for example, Rob, it would have
printed:

Hi there! I'm Rob

Just like functions, methods can also take parameters and return results:

class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }

 greet() {
 console.log("Hi there!");
 }

 compliment(name, object) {
 return "That's a wonderful " + object + ", " + name;
 }
}

The compliment function does not output anything itself, so we are logging it

let compliment = p.compliment("Harry", "hat");
console.log(compliment);

The output will be:

That's a wonderful hat, Harry

In this case we are sending parameters into our method, because you don't usually
compliment your own properties (that's a nice sentence, Maaike!). However,
whenever the method doesn't require external input but only the properties of
the object, no parameters will work and the method can use its object's properties.
Let's do an exercise and then move on to using the properties of classes outside the
class.

Classes

[156]

Practice exercise 7.2
Get your friend's full name:

1. Using the Person class from Practice exercise 7.1, add a method called
fullname, which returns the concatenated value of firstname and lastname
when invoked.

2. Create values for person1 and person2 using two friends' first and last names.
3. Using the fullname method within the class, return the full name of one or

both people.

Properties
Properties, sometimes also called fields, hold the data of the class. We have seen one
kind of property already, when we created them in our constructors:

class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }
}

Here, the Person class gets two properties from the constructor: firstname and
lastname. Properties can be added or removed just like we did for objects. These
properties can be accessed from outside the class, as we saw when we logged them
outside the class by accessing them on the instance:

let p = new Person("Maaike", "van Putten");
console.log("Hi", p.firstname);

Often, it is not desirable to provide direct access to our properties. We want our class
to be in control of the values of properties for several reasons—perhaps we want to
do validation on a property to assure it has a certain value. For example, imagine
wanting to validate an age as not being lower than 18. We can achieve this by
making direct access to the property from outside the class impossible.

This is how to add properties that aren't accessible from outside. We prefix them
with a # symbol:

class Person {
 #firstname;
 #lastname;

Chapter 7

[157]

 constructor(firstname, lastname) {
 this.#firstname = firstname;
 this.#lastname = lastname;
 }
}

Right now, the firstname and lastname properties cannot be accessed from outside
the class. This is done by adding # in front of the property. If we try it:

let p = new Person("Maria", "Saga");
console.log(p.firstname);

We'll get:

undefined

If we wanted to make sure we could only create objects with names starting with an
"M," we could modify our constructor a bit:

constructor(firstname, lastname) {
 if(firstname.startsWith("M")){
 this.#firstname = firstname;
 } else {
 this.#firstname = "M" + firstname;
 }
 this.#lastname = lastname;
 }

Now when you try to create a person that has a firstname value that doesn't start
with an "M," it will add an M in front. So for example, the value of the following first
name is Mkay:

let p = new Person("kay", "Moon");

This is a very silly example of validation. At this point, we cannot access it from
outside the class at all after the constructor. We can only access it from inside the
class. This is where getters and setters come into play.

Getters and setters
Getters and setters are special properties that we can use to get data from a class and
to set data fields on the class. Getters and setters are computed properties. So, they
are more like properties than they are like functions. We call them accessors. They do
look a bit like functions, because they have () behind them, but they are not!

Classes

[158]

These accessors start with the get and set keywords. It is considered good practice to
make fields private as much as possible and provide access to them using getters and
setters. This way, the properties cannot be set from outside without the object itself
being in control. This principle is called encapsulation. The class encapsulates the
data, and the object is in control of its own fields.

Here is how to do it:

class Person {
 #firstname;
 #lastname;
 constructor(firstname, lastname) {
 this.#firstname = firstname;
 this.#lastname = lastname;
 }

 get firstname() {
 return this.#firstname;
 }

 set firstname(firstname) {
 this.#firstname = firstname;
 }

 get lastname() {
 return this.#lastname;
 }

 set lastname(lastname) {
 this.#lastname = lastname;
 }
}

The getter is used to get the property. Therefore, it doesn't take any parameters, but
simply returns the property. The setter is the other way around: it takes a parameter,
assigns this new value to the property, and returns nothing. The setter can contain
more logic, for example, some validation, as we'll see below. The getter can be used
outside the object as if it were a property. The properties are no longer directly
accessible from outside the class, but can be accessed via the getter to get the value
and via the setter to update the value. Here is how to use it outside the class instance:

let p = new Person("Maria", "Saga");
console.log(p.firstname);

Chapter 7

[159]

This will output:

Maria

We have created a new Person object with a first name of Maria and last name of
Saga. The output is showing the first name, which is only possible because we have a
getter accessor. We can also set the value to something else, because there is a setter.
Here is how to update the first name, so the name is no longer Maria, but Adnane.

p.firstname = "Adnane";

At this point, nothing special is happening in the setter. We could do a similar
validation as in the constructor before, like this:

set firstname(firstname) {
 if(firstname.startsWith("M")){
 this.#firstname = firstname;
 } else {
 this.#firstname = "M" + firstname;
 }
 }

This will check whether firstname starts with an M, and if it does it will update the
value to whatever the firstname parameter is. If it doesn't, it will concatenate an M in
front of the parameter.

Please note that we do not access firstname as if it was a function. If you put two
parentheses () after it, you would actually get an error telling you that it is not a
function.

Inheritance
Inheritance is one of the key concepts of OOP. It is the concept that classes can have
child classes that inherit the properties and methods from the parent class. For
example, if you needed all sorts of vehicle objects in your application, you could
specify a class named Vehicle in which you specify some shared properties and
methods of vehicles. You would then go ahead and create the specific child classes
based on this Vehicle class, for example, boat, car, bicycle, and motorcycle.

This could be a very simple version of the Vehicle class:

class Vehicle {
 constructor(color, currentSpeed, maxSpeed) {
 this.color = color;

Classes

[160]

 this.currentSpeed = currentSpeed;
 this.maxSpeed = maxSpeed;
 }

 move() {
 console.log("moving at", this.currentSpeed);
 }

 accelerate(amount) {
 this.currentSpeed += amount;
 }
}

Here we have two methods in our Vehicle class: move and accelerate. And this
could be a Motorcyle class inheriting from this class using the extends keyword:

class Motorcycle extends Vehicle {
 constructor(color, currentSpeed, maxSpeed, fuel) {
 super(color, currentSpeed, maxSpeed);
 this.fuel = fuel;
 }
 doWheelie() {
 console.log("Driving on one wheel!");
 }
}

With the extends keyword we specify that a certain class is the child of another class.
In this case, Motorcycle is a child class of Vehicle. This means that we'll have access
to properties and methods from Vehicle in our Motorcycle class. We have added a
special doWheelie() method. This is not something that makes sense to add to the
Vehicle class, because this is an action that is specific to certain vehicles.

The super word in the constructor is calling the constructor from the parent, the
Vehicle constructor in this case. This makes sure that the fields from the parent
are set as well and that the methods are available without having to do anything
else: they are automatically inherited. Calling super() is not optional, you must do
it when you are in a class that is inheriting from another class, else you will get a
ReferenceError.

Because we have access to the fields of Vehicle in Motorcycle, this will work:

let motor = new Motorcycle("Black", 0, 250, "gasoline");
console.log(motor.color);

Chapter 7

[161]

motor.accelerate(50);
motor.move();

And this is what it will output:

Black
moving at 50

We cannot access any Motorcycle specific properties or methods in our Vehicle class.
This is because not all vehicles are motorcycles, so we cannot be sure that we would
have the properties or methods from a child.

Right now, we don't use any getters and setters here, but we clearly could. If there
are getters and setters in the parent class, they are inherited by the child class as well.
This way we could influence which properties could be fetched and changed (and
how) outside our class. This is generally a good practice.

Prototypes
A prototype is the mechanism in JavaScript that makes it possible to have objects.
When nothing is specified when creating a class, the objects inherit from the
Object.prototype prototype. This is a rather complex built-in JavaScript class that
we can use. We don't need to look at how this is implemented in JavaScript, as
we can consider it the base object that is always on top of the inheritance tree and
therefore always present in our objects.

There is a prototype property available on all classes, and it is always named
"prototype." We can access it like this:

ClassName.prototype

Let's give an example of how to add a function to a class using the prototype
property. In order to do so, we'll be using this Person class:

class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }

 greet() {
 console.log("Hi there!");
 }
}

Classes

[162]

And here is how to add a function to this class using prototype:

Person.prototype.introduce = function () {
 console.log("Hi, I'm", this.firstname);
};

prototype is a property holding all the properties and methods of an object. So,
adding a function to prototype is adding a function to the class. You can use
prototype to add properties or methods to an object, like we did in the above
example in our code with the introduce function. You can also do this for properties:

Person.prototype.favoriteColor = "green";

And then you can call them from instances of Person:

let p = new Person("Maria", "Saga");
console.log(p.favoriteColor);
p.introduce();

It will output:

green
Hi, I'm Maria

And it will be as if you had defined the class with a favorite color holding a
default value, and a function, introduce. They have been added to the class and
are available for all instances and future instances.

So the methods and properties defined via prototype are really as if they were
defined in the class. This means that overwriting them for a certain instance doesn't
overwrite them for all instances. For example, if we were to have a second Person
object, this person could overwrite the favoriteColor value and this wouldn't
change the value for our object with firstname as Maria.

This is something you should not be using when you have control over the class
code and you want to change it permanently. In that case, just change the class.
However, you can expand existing objects like this and even expand existing objects
conditionally. It is also important to know that the JavaScript built-in objects have
prototypes and inherit from Object.prototype. However, be sure not to modify this
prototype since it will affect how our JavaScript works.

Chapter 7

[163]

Practice exercise 7.3
Create a class that contains properties for different animal species and the sound that
each species makes, and create two (or more) animals:

1. Create a method that prints a given animal and its sound.
2. Add a prototype with another action for the animal.
3. Output an entire animal object into the console.

Chapter projects

Employee tracking app
Create a class to track the employees of a company:

1. Use first names, last names, and the number of years worked as values in the
constructor.

2. Create two or more people with values for their first names, last names, and
the number of years they've worked at the company. Add the people into an
array.

3. Set up a prototype to return the details of the person's first and last names
and how long they've worked at the company.

4. Iterate the contents of the array to output the results into the console, adding
some text to make the output a full sentence.

Menu items price calculator
Create a class which will allow you to work out the combined price of a number of
items, and interact with it to work out the total cost of different orders.

1. Create a class that contains the prices of two menu items as private field
declarations.

2. Use the constructor in the class to get the argument values (how many of
each item are being bought).

3. Create a method to calculate and return the total cost depending on how
many of each item the user selects.

4. Use a getter property to grab the value output by the calculation method.
5. Create two or three objects with different combinations of menu selections,

and output the total cost in the console.

Classes

[164]

Self-check quiz
1. What is the keyword used to create a class?
2. How would you set up a class for a person's first and last names that could

include first and last as initial properties?
3. What is the concept of one thing gaining the properties and behaviors of

another thing called?
4. Which of the following are true about the constructor method?

• It gets executed automatically when a new object is created.
• It should only be added afterward.
• It has to include the constructor keyword.
• It is used to initialize object properties.
• It can be used when you have multiple values.

5. Troubleshoot the following code so that the prototype outputs the first and
last name of the Person into the console. Which is the correct syntax for the
Person prototype?

function Person(first,last) {
 this.first = first;
 this.last = last;
}
// What should go here: A, B, or C?
const friend1 = new Person("Laurence", "Svekis");
console.log(friend1.getName());

A)
Person.prototype.getName = (first,last) {
 return this.first + " " + this.last;
};

B)
Person.prototype.getName = function getName() {
return this.first + " " + this.last;
};

C)
Person.prototype = function getName() {
return this.first + " " + this.last;
};

Chapter 7

[165]

Summary
In this chapter, we introduced you to the concept of OOP. This means that we
structure our code in such a way that objects are the central players of the logic.
Classes are blueprints for objects. We can make a template for an object and create an
instance easily by using the new keyword.

We then saw that classes can inherit from each other by using the extends keyword.
Classes that extend from another class will have to call the constructor of this class
with super() and will then automatically have access to all the properties and
methods of the parent. This is great for reusable and highly maintainable code.

Lastly, we encountered prototypes. This is the built-in JavaScript concept that makes
classes possible. By adding properties and methods to a class using prototype, we
can modify the blueprint of that class.

In the next chapter, we will consider some of JavaScript's built-in methods, which
can be used to manipulate and add complexity to your code!

[167]

8
Built-In JavaScript Methods

We have just covered most of the basic building blocks in JavaScript. Now it's time
to look at some powerful built-in methods that will make your life easier that we
haven't seen yet. Built-in methods are functionality that we get out of the box with
JavaScript. We can use these methods without having to code them first. This is
something we have done a lot already, for example, console.log() and prompt().

Many built-in methods belong to built-in classes as well. These classes and their
methods can be used at any time because JavaScript has already defined them.
These classes exist for our convenience, since they are very common things to need,
such as the Date, Array, and Object classes.

The ability to harness the capabilities that are already built into JavaScript can
improve the effectiveness of the code, save time, and comply with various best
practices for developing solutions. We are going to address some of the common
uses for such functions, such as manipulating text, mathematical computations,
dealing with date and time values, interactions, and supporting robust code. Here
are the topics covered in this chapter:

• Global JavaScript methods
• String methods
• Math methods
• Date methods
• Array methods
• Number methods

Built-In JavaScript Methods

[168]

Introduction to built-in JavaScript
methods
We have seen many built-in JavaScript methods already. Any method that we didn't
define ourselves is a built-in method. Some examples include console.log(), Math.
random(), prompt(), and many more—think about methods on arrays for example.
The difference between a method and a function is that a function is defined
anywhere in the script, and a method is defined inside a class. So methods are pretty
much functions on classes and instances.

Methods can often be chained as well; this is only true for methods returning a
result. The next method will then be performed on the result. So for example:

let s = "Hello";
console.log(
 s.concat(" there!")
 .toUpperCase()
 .replace("THERE", "you")
 .concat(" You're amazing!")
);

We create a variable, s, and we store Hello in there on the first line. Then we want to
be logging something. This code has been divided over different lines for readability,
but it's actually one statement. We first perform a concat() method on our s
variable, which appends a string to our string. So after that first operation the value
is Hello there!. Then we transform this to uppercase with the next method. At that
point the value is HELLO THERE!. Then we proceed to replace THERE with you. After
that, the value becomes HELLO you!. We then append a string to it again and finally
the value will be logged:

HELLO you! You're amazing!

We need to log or store the output in this example, because the original string value
will not be updated by just calling methods on a string.

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 8

[169]

Global methods
The global JavaScript methods can be used without referring to the built-in object
they are part of. This means that we can just use the method name as if it is a
function that has been defined inside the scope we are in, without the "object" in
front of it. For example, instead of writing:

let x = 7;
console.log(Number.isNaN(x));

You can also write:

console.log(isNaN(x));

So, the Number can be left out, because isNaN is made globally available without
referring to the class it belongs to (in this instance, the Number class). In this case, both
of these console.log statements will log false (they are doing the exact same thing),
because isNaN returns true when it isn't a number. And 7 is a number, so it will log
false.

JavaScript has been built to have these available directly, so to achieve this, some
magic is going on beneath the surface. The JavaScript creators chose the methods
that they thought were most common. So the reasons why some of them are
available as global methods and others are not might seem a bit arbitrary. It's just
the choice of some very bright developers at a certain point in time.

We'll address the most common global methods below. We start with decoding and
encoding URIs, escaped and unescaped, followed by parsing numbers, and finally
evaluate.

Decoding and encoding URIs
Sometimes you will need to encode or decode a string. Encoding is simply
converting from one shape to another. In this case we will be dealing with percent
encoding, also called URL encoding. Before we start, there might be some confusion
on the URI and URL meaning. A URI (uniform resource identifier) is an identifier of
a certain resource. URL (uniform resource locator) is a subcategory of URI that is not
only an identifier, but also holds the information on how to access it (location).

Let's talk about encoding and decoding these URIs (and also URLs, since they are a
subset). An example of when you'd need this is when you are sending variables over
the URL using the get method in a form. These variables that you are sending via the
URL are called query parameters.

Built-In JavaScript Methods

[170]

If something contains a space, this will be decoded, because you cannot use spaces in
your URL. They will be converted to %20. The URL might look something like:

www.example.com/submit?name=maaike%20van%20putten&love=coding

All characters can be converted to some %-starting format. However, this is not
necessary in most cases. URIs can contain a certain number of alphanumeric
characters. The special characters need to be encoded. An example, before encoding, is:

https://www.example.com/submit?name=maaike van putten

The same URL after encoding is:

https://www.example.com/submit?name=maaike%20van%20putten

There are two pairs of encode and decode methods. We will discuss them and their
use cases here. You cannot have a URI with spaces, so working with these methods
is crucial in order to work with variables containing spaces.

decodeUri() and encodeUri()
The decodeUri() and encodeUri() are actually not really encoding and decoding,
they are more so fixing broken URIs. It is like the previous example with the spaces.
This method pair is really good at fixing broken URIs and decoding them back into
a string. Here you can see them in action:

let uri = "https://www.example.com/submit?name=maaike van putten";
let encoded_uri = encodeURI(uri);
console.log("Encoded:", encoded_uri);
let decoded_uri = decodeURI(encoded_uri);
console.log("Decoded:", decoded_uri);

And here is the output:

Encoded: https://www.example.com/submit?name=maaike%20van%20putten
Decoded: https://www.example.com/submit?name=maaike van putten

As you can see, it has replaced the spaces in the encoded version and removed them
again in the decoded version. All the other characters get to stay the same—this encode
and decode do not take special characters into account, and therefore leave them in the
URI. Colons, question marks, equal signs, slashes, and ampersands can be expected.

This is great for fixing broken URIs, but it's actually a bit useless whenever you need
to encode strings that contain any of these characters: / , ? : @ & = + $ #. These can
be used in URIs as part of the URI and are therefore skipped. This is where the next
two built-in methods come in handy.

Chapter 8

[171]

decodeUriComponent() and encodeUriComponent()
So, the methods decodeURI() and encodeURI() can be very useful to fix a broken URI,
but they are useless when you only want to encode or decode a string that contains a
character with a special meaning, such as = or &. Take the following example:

https://www.example.com/submit?name=this&that=some thing&code=love

Weird value, we can agree on that, but it will demonstrate our problem. Using
encodeURI on this will leave us with:

https://www.example.com/submit?name=this&that=some%20thing&code=love

There are actually 3 variables in here according to URI standards:

• name (value is this)
• that (value is some thing)
• code (value is love)

While we intended to send in one variable, name, with the value this&that=some
thing&code=love.

In this case, you will need decodeUriComponent() and encodeUriComponent(),
because you would need the = and & in the variable part encoded as well. Right
now, this is not the case and it will actually cause problems in interpreting the query
parameters (the variables after the ?). We only wanted to send in one parameter:
name. But instead we sent in three.

Let's have a look at another example. Here is what the example of the previous
section would have done with this component encoding:

let uri = "https://www.example.com/submit?name=maaike van putten";
let encoded_uri = encodeURIComponent(uri);
console.log("Encoded:", encoded_uri);
let decoded_uri = decodeURIComponent(encoded_uri);
console.log("Decoded:", decoded_uri);

The resulting output is as follows:

Encoded: https%3A%2F%2Fwww.example.com%2Fsubmit%3Fname%3Dmaaike%20
van%20putten
Decoded: https://www.example.com/submit?name=maaike van putten

Built-In JavaScript Methods

[172]

Clearly, you don't want this as your URI, but the component methods are useful to
encode, for example, a URL variable. If the URL variable were to contain a special
character, like = and &, this would change the meaning and break the URI if these
characters don't get encoded.

Encoding with escape() and unescape()
These are still global methods available to do something similar to encode (escape)
and decode (unescape). Both methods are strongly discouraged to use and they
might actually disappear from future JavaScript versions or may not be supported by
browsers for good reasons.

Practice exercise 8.1
Output the decodeURIComponent() for the string How's%20it%20going%3F to the
console. Also, encode the string How's it going? to be output into the console.
Create a web URL and encode the URI:

1. Add the strings as variables in the JavaScript code
2. Using encodeURIComponent() and decodeURIComponent() output the results

into the console
3. Create a web URI with request parameters http://www.basescripts.

com?=Hello World";

4. Encode and output the web URI into the console

Parsing numbers
There are different ways to parse strings to numbers. In many situations you will have
to translate a string to a number, for example reading input boxes from an HTML web
page. You cannot calculate with strings, but you can with numbers. Depending on
what exactly you need to do, you will need either one of these methods.

Making integers with parseInt()
With the method parseInt() a string will be changed to an integer. This method
is part of the Number class, but it is global and you can use it without the Number in
front of it. Here you can see it in action:

let str_int = "6";
let int_int = parseInt(str_int);
console.log("Type of ", int_int, "is", typeof int_int);

Chapter 8

[173]

We start off with a string containing a 6. Then we convert this string to an integer
using the parseInt method, and when we log the result, we will get in the console:

Type of 6 is number

You can see that the type has changed from string to number. At this point, you may
wonder what will happen if parseInt() tries to parse other types of numbers, like
string versions of floats or binary numbers. What do you think will happen when we
do this?

let str_float = "7.6";
let int_float = parseInt(str_float);
console.log("Type of", int_float, "is", typeof int_float);

let str_binary = "0b101";
let int_binary = parseInt(str_binary);
console.log("Type of", int_binary, "is", typeof int_binary);

This will log:

Type of 7 is number
Type of 0 is number

Can you figure out the logic here? First of all, JavaScript doesn't like crashing or
using errors as a way out, so it is trying to make it work to the best of its abilities. The
parseInt() method simply stops parsing when it runs into a non-numeric character.
This is the specified behavior, and you need to keep that in mind while working with
parseInt(). In the first case, it stops parsing as soon as it finds the dot, so the result
is 7. And in the binary number case, it stops parsing as soon as it hits the b, and the
result is 0. By now you can probably figure out what this does:

let str_nan = "hello!";
let int_nan = parseInt(str_nan);
console.log("Type of", int_nan, "is", typeof int_nan);

Since the first character is non-numeric, JavaScript will convert this string to NaN.
Here is the result that you will get in the console:

Type of NaN is number

So parseInt() can be a bit quirky, but it's very valuable. In the real world, it is used a
lot to combine the input of users via web pages and calculations.

Built-In JavaScript Methods

[174]

Making floats with parseFloat()
Similarly, we can use parseFloat() to parse a string to a float. It works exactly the
same, except it can also understand decimal numbers and it doesn't quit parsing as
soon as it runs into the first dot:

let str_float = "7.6";
let float_float = parseFloat(str_float);
console.log("Type of", float_float, "is", typeof float_float);

This will log:

Type of 7.6 is number

With the parseInt(), this value became 7, because it would stop parsing as soon as
it finds a non-numeric character. However, parseFloat() can deal with one dot in
the number, and the numbers after that are interpreted as decimals. Can you guess
what happens when it runs into a second dot?

let str_version_nr = "2.3.4";
let float_version_nr = parseFloat(str_version_nr);
console.log("Type of", float_version_nr, "is", typeof float_version_
nr);

This will log:

Type of 2.3 is number

The strategy is similar to the parseInt() function. As soon as it finds a character it
cannot interpret, a second dot in this case, it will stop parsing and just return the
result so far. Then one more thing to note. It is not going to append a .0 to integers,
so 6 is not going to become 6.0. This example:

let str_int = "6";
let float_int = parseFloat(str_int);
console.log("Type of", float_int, "is", typeof float_int);

Will log:

Type of 6 is number

Lastly, the behavior for binary numbers and strings is the same. It is going to stop
parsing as soon as it runs into a character it cannot interpret:

Chapter 8

[175]

let str_binary = "0b101";
let float_binary = parseFloat(str_binary);
console.log("Type of", float_binary, "is", typeof float_binary);

let str_nan = "hello!";
let float_nan = parseFloat(str_nan);
console.log("Type of", float_nan, "is", typeof float_nan);

This will log:

Type of 0 is number
Type of NaN is number

You will use the parseFloat() whenever you need a decimal number. However, it
will not work with binary, hexadecimal, and octal values, so whenever you really
need to work with these values or integers you'll have to use parseInt().

Executing JavaScript with eval()
This global method executes the argument as a JavaScript statement. This means
that it will just do whatever JavaScript is inserted in there, as if that JavaScript were
written directly on the spot instead of eval(). This can be convenient for working
with injected JavaScript, but injected code comes with great risks. We'll deal with
these risks later; let's first explore an example. Here is a fabulous website:

<html>
 <body>
 <input onchange="go(this)"></input>
 <script>
 function go(e) {
 eval(e.value);
 }
 </script>
 </body>
</html>

This is a basic HTML web page with an input box on it.

You'll learn more about HTML in Chapter 9, The Document Object
Model.

Built-In JavaScript Methods

[176]

Whatever you insert in the input box will get executed. If we were to write this in the
input box:

document.body.style.backgroundColor = "pink";

The website background would change to pink. That looks like fun, right? However,
we cannot stress enough how careful you should be using eval(). They might as
well have called it evil according to many developers. Can you reason why this
might be?

The answer is security! Yes, this is probably the worst thing security-wise you can
do in most situations. You are going to execute external code. This code could be
malicious. It is a method for supporting code injection. The well-respected OWASP
(Open Web Application Security Project) Foundation creates top 10s for security
threats every 3 years. Code injection has been on it since their first top 10 and it is
still in the OWASP top 10 security threats now. Running it server side can cause
your server to crash and your website to go down, or worse. There are almost always
better solutions to what you want to do than using eval(). Next to the security risks,
it is terrible performance-wise. So just for this reason already you might want to
avoid using it.

Alright, so one last note on this. If you know what you are doing you might want to
use it in very specific cases. Even though it is "evil", it has a lot of power. It can be
okay to use in certain cases, for example when you are creating template engines,
your own interpreter, and all other JavaScript core tools. Just beware of the danger
and control access to this method carefully. And one last bonus tip, when you feel
like you really have to use eval, do a quick search on the web. Chances are that you
will find a better approach.

Array methods
We have seen arrays already—they can contain multiple items. We have also seen
quite a few built-in methods on arrays, like shift() and push(). Let's look at a few
more in the following sections.

Performing a certain action for every item
There is a reason we are starting with this method. You might be thinking of loops
at this point, but there is a built-in method that you can use to execute a function for
every element in the array. This is the forEach() method. We mentioned this briefly
in Chapter 6, Functions, but let's consider it in some more detail. It takes the function
that needs to be executed for every element as input. Here you can see an example:

Chapter 8

[177]

let arr = ["grapefruit", 4, "hello", 5.6, true];

function printStuff(element, index) {
 console.log("Printing stuff:", element, "on array position:", index);
}

arr.forEach(printStuff);

This code snippet will write to the console:

Printing stuff: grapefruit on array position: 0
Printing stuff: 4 on array position: 1
Printing stuff: hello on array position: 2
Printing stuff: 5.6 on array position: 3
Printing stuff: true on array position: 4

As you can see, it called the printStuff() function for every element in the array.
And we can also use the index, it is the second parameter. We don't need to
control the flow of the loop here and we cannot get stuck at a certain point. We
just need to specify what function needs to be executed for every element. And
the element will be input for this function. This is used a lot, especially for a more
functional programming style in which many methods get chained, for example,
to process data.

Filtering an array
We can use the built-in filter() method on an array to alter which values are in the
array. The filter method takes a function as an argument, and this function should
return a Boolean. If the Boolean has the value true, the element will end up in the
filtered array. If the Boolean has the value false, the element will be left out. You can
see how it works here:

let arr = ["squirrel", 5, "Tjed", new Date(), true];

function checkString(element, index) {
 return typeof element === "string";
}

let filterArr = arr.filter(checkString);
console.log(filterArr);

Built-In JavaScript Methods

[178]

This will log to the console:

['squirrel', 'Tjed']

It is important to realize that the original array has not changed, the filter()
method returns a new array with the elements that made it through the filter. We
capture it here in the variable filterArr.

Checking a condition for all elements
You can use the every() method to see whether something is true for all elements
in the array. If that is the case, the every() method will return true, else it will
return false. We are using the checkString() function and array from the previous
example here:

console.log(arr.every(checkString));

This will log false, since not all elements are of type string in the array.

Replacing part of an array with another part of
the array
The copyWithin() method can be used to replace a part of the array with another
part of the array. In the first example we specify 3 arguments. The first one is the
target position, to which the values get copied. The second one is the start of what
to copy to the target position and the last one is the end of the sequence that will be
copied to the target position; this last index is not included. Here we are only going
to override position 0 with whatever is in position 3:

arr = ["grapefruit", 4, "hello", 5.6, true];
arr.copyWithin(0, 3, 4);

arr becomes:

[5.6, 4, 'hello', 5.6, true]

If we specify a range with length 2, the first two elements after the starting position
get overridden:

arr = ["grapefruit", 4, "hello", 5.6, true];
arr.copyWithin(0, 3, 5);

Chapter 8

[179]

And now arr becomes:

[5.6, true, 'hello', 5.6, true]

We can also not specify an end at all; it will take the range to the end of the string:

let arr = ["grapefruit", 4, "hello", 5.6, true, false];
arr.copyWithin(0, 3);
console.log(arr);

This will log:

[5.6, true, false, 5.6, true, false]

It is important to keep in mind that this function changes the content of the original
array, but will never change the length of the original array.

Mapping the values of an array
Sometimes you'll need to change all the values in an array. With the array map()
method you can do just that. This method will return a new array with all the new
values. You'll have to say how to create these new values. This can be done with the
arrow function. It is going to execute the arrow function for every element in the
array, so for example:

let arr = [1, 2, 3, 4];
let mapped_arr = arr.map(x => x + 1);
console.log(mapped_arr);

This is what the console output with the new mapped array looks like:

[2, 3, 4, 5]

Using the arrow function, the map() method has created a new array, in which each
of the original array values has been increased by 1.

Finding the last occurrence in an array
We can find occurrences with indexOf() as we have seen already. To find the last
occurrence, we can use the lastIndexOf() method on an array, just as we did for
string.

Built-In JavaScript Methods

[180]

It will return the index of the last element with that value, if it can find it at all:

let bb = ["so", "bye", "bye", "love"];
console.log(bb.lastIndexOf("bye"));

This will log 2, because the index 2 holds the last bye variable. What do you think
you'll get when you ask for the last index of something that's not there?

let bb = ["so", "bye", "bye", "love"];
console.log(bb.lastIndexOf("hi"));

That's right (hopefully)! It's -1.

Practice exercise 8.2
Remove duplicates from the array using filter() and indexOf(). The starting array
is:

["Laurence", "Mike", "Larry", "Kim", "Joanne", "Laurence", "Mike",
"Laurence", "Mike", "Laurence", "Mike"]

Using the array filter() method, this will create a new array using the elements that
pass the test condition implemented by the function. The final result will be:

 ['Laurence', 'Mike', 'Larry', 'Kim', 'Joanne']

Take the following steps:

1. Create an array of names of people. Make sure you include duplicates. The
exercise will remove the duplicate names.

2. Using the filter() method, assign the results of each item from the array as
arguments within an anonymous function. Using the value, index, and array
arguments, return the filtered result. You can set the return value to true
temporarily as this will build the new array with all the results in the original
array.

3. Add a console.log call within the function that will output the index value
of the current item in the array. Also add the value so you can see the results
of the item value that has the current index number and the first matching
result from the array's index value.

Chapter 8

[181]

4. Using indexOf() the current value returns the index value of the item
and applies the condition to check to see if it matches the original index
value. This condition will only be true on the first result so all subsequent
duplicates will be false and not get added to the new array. false will not
return the value into the new array. The duplicates will all be false since the
indexof() only gets the first match in the array.

5. Output the new, unique value array onto the console.

Practice exercise 8.3
Using the array map() method, update an array's contents. Take the following steps:

1. Create an array of numbers.
2. Using the array map method and an anonymous function, return an updated

array, multiplying all the numbers in the array by 2. Output the result into
the console.

3. As an alternative method, use the arrow function format to multiply each
element of the array by 2 with the array map() method in one line of code.

4. Log the result onto the console.

String methods
We have worked with strings already and chances are that you have run into some
of the methods on strings by now. There are a few we didn't address specifically just
yet and we are going to discuss them in this section.

Combining strings
When you want to concatenate strings, you can use the concat() method. This does
not change the original string(s); it returns the combined result as a string. You will
have to capture the result in a new variable, else it will get lost:

let s1 = "Hello ";
let s2 = "JavaScript";
let result = s1.concat(s2);
console.log(result);

Built-In JavaScript Methods

[182]

This will log:

Hello JavaScript

Converting a string to an array
With the split() method we can convert a string to an array. Again, we will have to
capture the result; it is not changing the original string. Let's use the previous result
containing Hello JavaScript. We will have to tell the split method on what string it
should split. Every time it encounters that string, it will create a new array item:

let result = "Hello JavaScript";
let arr_result = result.split(" ");
console.log(arr_result);

This will log:

['Hello', 'JavaScript']

As you can see, it creates an array of all the elements separated by a space. We can
split by any character, for example a comma:

let favoriteFruits = "strawberry,watermelon,grapefruit";
let arr_fruits = favoriteFruits.split(",");
console.log(arr_fruits);

This will log:

['strawberry', 'watermelon', 'grapefruit']

It has now created an array with 3 items. You can split on anything, and the string
you are splitting on is left out of the result.

Converting an array to a string
With the join() method you can convert an array to a string. Here is a basic
example:

let letters = ["a", "b", "c"];
let x = letters.join();
console.log(x);

Chapter 8

[183]

This will log:

a,b,c

The type of x is string. If you want something else other than a comma, you can
specify that, like this:

let letters = ["a", "b", "c"];
let x = letters.join('-');
console.log(x);

This will use the – instead of the comma. This is the result:

a-b-c

This can be nicely combined with the split() method that we covered in the
previous section, which does the reverse and converts a string into an array.

Working with index and positions
Being able to find out what index a certain substring is at within your string is very
useful. For example, when you need to search for a certain word through the user
input of a log file and create a substring starting at that index. Here is an example of
how to find the index of a string. The indexOf() method returns the index, a single
number, of the first character of the substring:

let poem = "Roses are red, violets are blue, if I can do JS, then you
 can too!";
let index_re = poem.indexOf("re");
console.log(index_re);

This is logging 7 to the console, because the first occurrence of re is in are, and the re
begins at index 7. When it can't find an index, it will return -1, like this example:

let indexNotFound = poem.indexOf("python");
console.log(indexNotFound);

It is logging -1 to indicate that the string we are searching for doesn't occur in the
target string. Often you will write an if check to see whether it's -1 before dealing
with the result. For example:

if(poem.indexOf("python") != -1) {
 // do stuff
}

Built-In JavaScript Methods

[184]

An alternative way of searching for a particular substring within a string is to use the
search() method:

let searchStr = "When I see my fellow, I say hello";
let pos = searchStr.search("lo");
console.log(pos);

This will log 17, because that is the index of lo in fellow. Much like indexOf(), if it
cannot find it, it will return -1. This is the case for this example:

let notFound = searchStr.search("JavaScript");
console.log(notFound);

search() will accept a regex format as input, whereas indexOf() just takes a string.
indexOf() is faster than the search() method, so if you just need to look for a string,
use indexOf(). If you need to look for a string pattern, you'll have to use the search()
method.

Moving on, the indexOf() method is returning the index of the first occurrence,
but similarly, we also have a lastIndexOf() method. It returns the index where the
argument string occurs last. If it cannot find it, it returns -1. Here is an example:

let lastIndex_re = poem.lastIndexOf("re");
console.log(lastIndex_re);

This returns 24; this is the last time re appears in our poem. It is the second are.

Sometimes you will have to do the reverse; instead of looking for what index a string
occurs at, you will want to know what character is at a certain index position. This is
where the charAt(index) method comes in handy, where the specified index position
is taken as an argument:

let pos1 = poem.charAt(10);
console.log(pos1);

This is logging r, because the character at index 10 is the r of red. If you are asking
for the position of an index that is out of the range of the string, it will return an
empty string, as is happening in this example:

Regex is a special syntax for defining string patterns, with which
you can replace all occurrences, but we'll deal with that in Chapter
12, Intermediate JavaScript.

Chapter 8

[185]

let pos2 = poem.charAt(1000);
console.log(pos2);

This will log an empty line to the screen, and if you ask for the type of pos2, it will
return string.

Creating substrings
With the slice(start, end) method we can create substrings. This does not alter the
original string, but returns a new string with the substring. It takes two parameters,
the first is the index at which it starts and the second is the end index. If you leave
out the second index it will just continue until the end of the string from the start.
The end index is not included in the substring. Here is an example:

let str = "Create a substring";
let substr1 = str.slice(5);
let substr2 = str.slice(0,3);
console.log("1:", substr1);
console.log("2:", substr2);

This will log:

1: e a substring
2: Cre

The first one only has one argument, so it starts at index 5 (which holds an e) and
grabs the rest of the string from there. The second one has two arguments, 0 and 3. C
is at index 0 and a is at index 3. Since the last index is not included in the substring,
it will only return Cre.

Replacing parts of the string
If you need to replace a part of the string, you can use the replace(old, new)
method. It takes two arguments, one string to look for in the string and one new
value to replace the old value with. Here is an example:

let hi = "Hi buddy";
let new_hi = hi.replace("buddy", "Pascal");
console.log(new_hi);

Built-In JavaScript Methods

[186]

This will log to the console Hi Pascal. If you don't capture the result, it is gone,
because the original string will not get changed. If the string you are targeting
doesn't appear in the original string, the replacement doesn't take place and the
original string will be returned:

let new_hi2 = hi.replace("not there", "never there");
console.log(new_hi2);

This logs Hi buddy.

One last note here, it is only changing the first occurrence by default. So this example
will only replace the first hello in the new string:

let s3 = "hello hello";
let new_s3 = s3.replace("hello", "oh");
console.log(new_s3);

This logs oh hello. If we wanted to replace all the occurences, we could use the
replaceAll() method. This will replace all occurrences with the specified new string,
like this:

let s3 = "hello hello";
let new_s3 = s3.replaceAll("hello", "oh");
console.log(new_s3);

This logs oh oh.

Uppercase and lowercase
We can change the letters of a string with the toUpperCase() and toLowerCase()
built-in methods on string. Again, this is not changing the original string, so we'll
have to capture the result:

let low_bye = "bye!";
let up_bye = low_bye.toUpperCase();
console.log(up_bye);

This logs:

BYE!

Chapter 8

[187]

It converts all the letters to uppercase. We can do the opposite with toLowerCase():

let caps = "HI HOW ARE YOU?";
let fixed_caps = caps.toLowerCase();
console.log(fixed_caps);

This will log:

hi how are you?

Let's make it a bit more complicated and say that we'd like the first letter of the
sentence to be capitalized. We can do this by combining some of the methods we
have seen already right now:

let caps = "HI HOW ARE YOU?";
let fixed_caps = caps.toLowerCase();
let first_capital = fixed_caps.charAt(0).toUpperCase().concat(fixed_
caps.slice(1));
console.log(first_capital);

We are chaining the methods here; we first grab the first character of fixed_caps
with charAt(0) and then make it uppercase by calling toUpperCase() on it. We then
need the rest of the string and we get it by concatenating slice(1).

The start and end of a string
Sometimes you would want to check what a string starts or ends with. You've
guessed it, there are built-in methods for this on string. We can imagine this chapter
is tough to work through, so here is a little encouragement and an example at the
same time:

let encouragement = "You are doing great, keep up the good work!";
let bool_start = encouragement.startsWith("You");
console.log(bool_start);

This will log true to the console, because the sentence starts with You. Careful here,
because it is case sensitive. So the following example will log false:

let bool_start2 = encouragement.startsWith("you");
console.log(bool_start2);

Built-In JavaScript Methods

[188]

If you don't care about uppercase or lowercase, you can use the previously discussed
toLowerCase() method here, so that it will not take uppercase or lowercase into
account:

let bool_start3 = encouragement.toLowerCase().startsWith("you");
console.log(bool_start3);

We are now converting the string to lowercase first, so we know we are only
working with lowercase characters here. However, an important side note here is
that this will affect performance for huge strings.

To end this section, we can do the same thing for checking whether a string ends
with a certain string. You can see it in action here:

let bool_end = encouragement.endsWith("Something else");
console.log(bool_end);

Since it doesn't end with Something else, it will return false.

Practice exercise 8.4
Using string manipulation, create a function that will return a string with the first
letter of all the words capitalized and the rest of the letters in lowercase. You should
transform the sentence thIs will be capiTalized for each word into This Will Be
Capitalized For Each Word:

1. Create a string with several words that have letters with different cases, a
mix of upper and lowercase words.

2. Create a function that gets a string as an argument, which will be the value
that we will manipulate.

3. In the function first transform everything to lowercase letters.
4. Create an empty array that can hold the values of the words when we

capitalize them.
5. Convert the phrase into words in an array using the split() method.
6. Loop through each one of the words that are now in the new array, so you

can select each one independently. You can use forEach() for this.

Again, a more performance-friendly alternative is to use regex.
Getting excited for Chapter 12, Intermediate JavaScript, yet?

Chapter 8

[189]

7. Using slice() isolate the first letter in each word, then transform it to
uppercase. Again using slice(), get the remaining value of the word
without including the first letter. Then concatenate the two together to form
the word that is now capitalized.

8. Add the new capitalized word into the blank array that you created. By the
end of the loop you should have an array with all the words as separate
items in the new array.

9. Take the array of updated words and using the join() method, transform
them back into a string with spaces between each word.

10. Return the value of the newly updated string with capitalized words that can
then be output into the console.

Practice exercise 8.5
Using the replace() string method, complete this vowel replacer exercise by
replacing the vowels in a string with numbers. You can start with this string:

I love JavaScript

And turn it into something like the following:

2 l3v1 j0v0scr2pt

Take the following steps:

1. Create the previously specified string, and convert it to lowercase.
2. Create an array containing the vowels: a, e, i, o, u.
3. Loop through each letter you have in the array, and output the current letter

into the console so that you can see which letter will be converted.
4. Within the loop, using replaceAll() update each vowel substring with the

index value of the letter from the vowel array.

5. Once the loop completes output the result of the new string into the console.

Using replace() will only replace the first occurrence;
if you use replaceAll() this will update all matching
results.

Built-In JavaScript Methods

[190]

Number methods
Let's move on to some built-in methods on the Number object. We have seen a few
already, these are so popular that some of them have been made into global methods.

Checking if something is (not) a number
This can be done with isNaN(). We have seen this already when we talked about
global methods, we can use this method without Number in front of it. Often you will
want to do the opposite, you can negate the function with an ! in front of it:

let x = 34;
console.log(isNaN(x));
console.log(!isNaN(x));
let str = "hi";
console.log(isNaN(str));

This will log to the console:

false
true
true

Since x is a number, isNaN will be false. But this result negated becomes true, since x
is a number. The string hi is not a number, so it will become false. And this one?

let str1 = "5";
console.log(isNaN(str1));

Some funky stuff is going on here, even though 5 is between quotation marks,
JavaScript still sees that it's a 5 and it will log false. At this point, I'm sure you'd
wish your partner, family, and coworkers are as understanding and forgiving as
JavaScript.

Checking if something is finite
By now you might be able to guess the name of the method on Number that checks
whether something is finite. It is a very popular one and has been made into a global
method as well, and its name is isFinite(). It returns false for NaN, Infinity, and
undefined, and true for all other values:

Chapter 8

[191]

let x = 3;
let str = "finite";
console.log(isFinite(x));
console.log(isFinite(str));
console.log(isFinite(Infinity));
console.log(isFinite(10 / 0));

This will log:

true
false
false
false

The only finite number in this list is x. The others are not finite. A string is a not a
number and is therefore not finite. Infinity is not finite and 10 divided by 0 returns
Infinity (not an error).

Checking if something is an integer
Yes, this is done with isInteger(). Unlike isNaN() and isFinite(), isInteger() has
not been made global and we will have to refer to the Number object to use it. It really
does what you think it would: it returns true if the value is an integer and false
when it's not:

let x = 3;
let str = "integer";
console.log(Number.isInteger(x));
console.log(Number.isInteger(str));
console.log(Number.isInteger(Infinity));
console.log(Number.isInteger(2.4));

This will log:

true
false
false
false

Since the only integer in the list is x.

Built-In JavaScript Methods

[192]

Specifying a number of decimals
We can tell JavaScript how many decimals to use with the toFixed() method. This
is different from the rounding methods in Math, since we can specify the number of
decimals here. It doesn't change the original value, so we'll have to store the result:

let x = 1.23456;
let newX = x.toFixed(2);

This will only leave two decimals, so the value of newX will be 1.23. It rounds the
number normally; you can see this when we ask for one more decimal:

let x = 1.23456;
let newX = x.toFixed(3);
console.log(x, newX);

This logs 1.23456 1.235 as output.

Specifying precision
There is also a method to specify precision. Again this is different from the rounding
methods in the Math class, since we can specify the total number of numbers to look
at. This comes down to JavaScript looking at the total number of numbers. It is also
counting the ones before the dot:

let x = 1.23456;
let newX = x.toPrecision(2);

So the value of newX will be 1.2 here. And also here, it is rounding the numbers:

let x = 1.23456;
let newX = x.toPrecision(4);
console.log(newX);

This will log 1.235.

Now, let's move on and talk about some related mathematical methods!

Math methods
The Math object has many methods that we can use to do calculations and operations
on numbers. We will go over the most important ones here. You can see all
the available ones when you use an editor that shows suggestions and options
during typing.

Chapter 8

[193]

Finding the highest and lowest number
There is a built-in method max() to find the highest number among the arguments.
You can see it here:

let highest = Math.max(2, 56, 12, 1, 233, 4);
console.log(highest);

It logs 233, because that's the highest number. In a similar way, we can find the
lowest number:

let lowest = Math.min(2, 56, 12, 1, 233, 4);
console.log(lowest);

This will log 1, because that is the lowest number. If you try to do this with non-
numeric arguments, you will get NaN as a result:

let highestOfWords = Math.max("hi", 3, "bye");
console.log(highestOfWords);

It is not giving 3 as output, because it is not ignoring the text but concluding that
it cannot determine whether hi should be higher or lower than 3. So it returns NaN
instead.

Square root and raising to the power of
The method sqrt() is used to calculate the square root of a certain number. Here you
can see it in action:

let result = Math.sqrt(64);
console.log(result);

This will log 8, because the square root of 64 is 8. This method works just like the
mathematics you learned in school. In order to raise a number to a certain power
(baseexponent, for example 23), we can use the pow(base, exponent) function. Like this:

let result2 = Math.pow(5, 3);
console.log(result2);

We are raising 5 to the power of 3 here (53), so the result will be 125, which is the
result of 5*5*5.

Built-In JavaScript Methods

[194]

Turning decimals into integers
There are different ways to turn decimals into integers. Sometimes you will want to
round a number. This you can do with the round() method:

let x = 6.78;
let y = 5.34;

console.log("X:", x, "becomes", Math.round(x));
console.log("Y:", y, "becomes", Math.round(y));

This will log:

X: 6.78 becomes 7
Y: 5.34 becomes 5

As you can see it is using normal rounding here. It is also possible that you don't
want to round down, but up. For example, if you need to calculate how many wood
boards you need and you conclude that you need 1.1, 1 is not going to be enough
to do the job. You'll need 2. In this case, you can use the ceil() method (referring to
ceiling):

console.log("X:", x, "becomes", Math.ceil(x));
console.log("Y:", y, "becomes", Math.ceil(y));

This will log:

X: 6.78 becomes 7
Y: 5.34 becomes 6

The ceil() method is always rounding up to the first integer it encounters. We have
used this before when we were generating random numbers! Careful with negative
numbers here, because -5 is higher than -6. This is how it works, as you can see in
this example:

let negativeX = -x;
let negativeY = -y;

console.log("negativeX:", negativeX, "becomes", Math.ceil(negativeX));
console.log("negativeY:", negativeY, "becomes", Math.ceil(negativeY));

Chapter 8

[195]

This will log:

negativeX: -6.78 becomes -6
negativeY: -5.34 becomes -5

The floor() method is doing the exact opposite of the ceil() method. It rounds
down to the nearest integer number, as you can see here:

console.log("X:", x, "becomes", Math.floor(x));
console.log("Y:", y, "becomes", Math.floor(y));

This will log:

X: 6.78 becomes 6
Y: 5.34 becomes 5

Again, careful with negative numbers here, because it can feel counterintuitive:

console.log("negativeX:", negativeX, "becomes", Math.floor(negativeX));
console.log("negativeY:", negativeY, "becomes", Math.floor(negativeY));

This logs:

negativeX: -6.78 becomes -7
negativeY: -5.34 becomes -6

And then one last method, trunc(). This gives the exact same result as floor() for
positive numbers, but it gets to these results differently. It is not rounding down, it is
simply only returning the integer part:

console.log("X:", x, "becomes", Math.trunc(x));
console.log("Y:", y, "becomes", Math.trunc(y));

This will log:

X: 6.78 becomes 6
Y: 5.34 becomes 5

When we use negative numbers for trunc() we can see the difference:

negativeX: -6.78 becomes -6
negativeY: -5.34 becomes –5

So whenever you need to round down, you'll have to use floor(), if you need the
integer part of the number, you'll need trunc().

Built-In JavaScript Methods

[196]

Exponent and logarithm
The exponent is the number to which a base is being raised. We use e (Euler's
number) a lot in mathematics, this is what the exp() method in JavaScript does. It
returns the number to which e must be raised to get the input. We can use the exp()
built-in method of Math to calculate the exponent, and the log() method to calculate
the natural logarithm. You can see an example here:

let x = 2;
let exp = Math.exp(x);
console.log("Exp:", exp);
let log = Math.log(exp);
console.log("Log:", log);

This will log:

Exp: 7.38905609893065
Log: 2

Don't worry if you can't follow along mathematically at this point. You'll figure this
out whenever you'll need it for your programming.

Practice exercise 8.6
Experiment with the Math object with these steps:

1. Output the value of PI into the console using Math.
2. Using Math get the ceil() value of 5.7, get the floor() value of 5.7, get the

round value of 5.7, and output it into the console.
3. Output a random value into the console.
4. Use Math.floor() and Math.random() to get a number from 0 to 10.
5. Use Math.floor() and Math.random() to get a number from 1 to 10.
6. Use Math.floor() and Math.random() to get a number from 1 to 100.
7. Create a function to generate a random number using the parameters of min

and max. Run that function 100 times, returning into the console a random
number from 1 to 100 each time.

Date methods
In order to work with dates in JavaScript we use the built-in Date object. This object
contains a lot of built-in functions to work with dates.

Chapter 8

[197]

Creating dates
There are different ways to create a date. One way to create dates is by using the
different constructors. You can see some examples here:

let currentDateTime = new Date();
console.log(currentDateTime);

This will log the current date and time, in this case:

2021-06-05T14:21:45.625Z

But, this way we are not using the built-in method, but the constructor. There is a
built-in method, now(), that returns the current date and time, similar to what the no
argument constructor does:

let now2 = Date.now();
console.log(now2);

This will log the current time, represented in seconds since January 1st 1970. This is
an arbitrary date representing the Unix epoch. In this case:

1622902938507

We can add 1,000 milliseconds to the Unix epoch time:

let milliDate = new Date(1000);
console.log(milliDate);

It will log:

1970-01-01T00:00:01.000Z

JavaScript can also convert many string formats to a date. Always mind the order in
which days and months of dates are presented in the date format and the interpreter
of JavaScript. This can vary depending on the region:

let stringDate = new Date("Sat Jun 05 2021 12:40:12 GMT+0200");
console.log(stringDate);

This will log:

2021-06-05T10:40:12.000Z

Built-In JavaScript Methods

[198]

And lastly, you can also specify a certain date using the constructor:

let specificDate = new Date(2022, 1, 10, 12, 10, 15, 100);
console.log(specificDate);

This will log:

2022-02-10T12:10:15.100Z

Please mind this very important detail here, the second parameter is the month. 0 is
for January and 11 is for December.

Methods to get and set the elements of a date
Now we have seen how to create dates, we'll learn how to get certain parts of dates.
This can be done with one of the many get methods. Which you will use depends on
the part you need:

let d = new Date();
console.log("Day of week:", d.getDay());
console.log("Day of month:", d.getDate());
console.log("Month:", d.getMonth());
console.log("Year:", d.getFullYear());
console.log("Seconds:", d.getSeconds());
console.log("Milliseconds:", d.getMilliseconds());
console.log("Time:", d.getTime());

This will log right now:

Day of week: 6
Day of month: 5
Month: 5
Year: 2021
Seconds: 24
Milliseconds: 171
Time: 1622903604171

The time is so high because it's the number of milliseconds since January 1st 1970.
You can change the date in a similar way with a set method. Important to note here
is that the original date object gets changed with these set methods:

d.setFullYear(2010);
console.log(d);

Chapter 8

[199]

We have changed the year of our date object to 2010. This will output:

2010-06-05T14:29:51.481Z

We can also change the month. Let's add the below snippet to our change of the year
code. This will change it to October. Please mind that while I'm doing this, I run
the code again and again, so the minutes and smaller units of time will vary in the
examples when I haven't set these yet:

d.setMonth(9);
console.log(d);

It will log:

2010-10-05T14:30:39.501Z

This is a weird one, in order to change the day, we have to call the setDate() method
and not the setDay() method. There is no setDay() method, since the day of the
week is deducted from the specific date. We cannot change that September 5th 2021 is
a Sunday. We can change the number of days of the month though:

d.setDate(10);
console.log(d);

This will log:

2010-10-10T14:34:25.271Z

We can also change the hours:

d.setHours(10);
console.log(d);

Now it will log:

2010-10-10T10:34:54.518Z

Remember how JavaScript doesn't like to crash? If you call setHours() with a
number higher than 24, it will roll over to the next date (1 per 24 hours) and after
using the modulo operator, whatever is left over from hours % 24 will be the hours.
The same process applies for minutes, seconds, and milliseconds.

Built-In JavaScript Methods

[200]

The setTime() actually overrides the complete date with the inserted epoch time:

d.setTime(1622889770682);
console.log(d);

This will log:

2021-06-05T10:42:50.682Z

Parsing dates
With the built-in parse() method we can parse epoch dates from strings. It accepts
many formats, but again you will have to be careful with the order of days and
months:

let d1 = Date.parse("June 5, 2021");
console.log(d1);

This will log:

1622851200000

As you can see it ends with many zeros, because no time or seconds are specified in
our string. And here is another example of a completely different format:

let d2 = Date.parse("6/5/2021");
console.log(d2);

This will also log:

1622851200000

The input for the parse is ISO formats of dates. Quite a few formats can be parsed
to string, but you'll have to be careful. The result might depend on the exact
implementation. Make sure that you know what the format of the incoming string
is, so that you don't confuse months and days, and make sure that you know the
behavior of the implementations. This can only be done reliably if you know what
the string format is. So for example when you need to convert data coming from
your own database or website's date picker.

Converting a date to a string
We can also convert dates back to strings. For example with these methods:

console.log(d.toDateString());

Chapter 8

[201]

This will log the day in written format:

Sat Jun 05 2021

This is another method that converts it differently:

console.log(d.toLocaleDateString());

It will log:

6/5/2021

Practice exercise 8.7
Output the date with the full month name into the console. When converting to or
from arrays, remember that they are zero-based:

1. Set up a date object, which can be any date in the future or past. Log the date
out into the console to see how it is typically output as a date object.

2. Set up an array with all the named months of the year. Keep them in
sequential order so that they will match the date month output.

3. Get the day from the date object value, using getDate().
4. Get the year from the date object value, using getFullYear().
5. Get the month of the date object value, using getMonth().
6. Set up a variable to hold the date of the date object and output the month

using the numeric value as the index for the array month name. Due to
arrays being zero-based and the month returning a value of 1-12, the result
needs to be subtracted by one.

7. Output the result into the console.

Chapter projects

Word scrambler
Create a function that returns a value of a word and scrambles the letter order with
Math.random():

1. Create a string that will hold a word value of your choice.
2. Create a function that can intake a parameter of the string word value.

Built-In JavaScript Methods

[202]

3. Just like an array, strings also have a length by default. You can use this
length to set the loop maximum value. You will need to create a separate
variable to hold this value as the length of the string will be decreasing as the
loop continues.

4. Create an empty temporary string variable that you can use to hold the new
scrambled word value.

5. Create a for loop that will iterate the number of letters within the string
parameter starting at 0 and iterating until the original length value of the
string is reached.

6. Create a variable that will randomly select one letter using its index value,
with Math.floor() and Math.random() multiplied by the current length of the
string.

7. Add the new letter to the new string and remove it from the original string.
8. Using console.log() output the newly constructed string from the random

letters and output to the console both the original string and the new one as
the loop continues.

9. Update the original string by selecting the substring from the index value
and adding it to the remaining string value from the index plus one onward.
Output the new original string value with the removed characters.

10. As you loop through the content you will see a countdown of the remaining
letters, the new scrambled version of the word as it is built, and the
decreasing letters in the original word.

11. Return the final result and invoke the function with the original string word
as an argument. Output this to the console.

Countdown timer
Create code for a countdown timer that can be executed in the console window, and
will show the total milliseconds, days, hours, minutes, and seconds remaining until a
target date is reached:

1. Create an end date that you want to count down to. Format it in a date type
format within a string.

2. Create a countdown function that will parse the endDate() and subtract the
current date from that end date. This will show the total in milliseconds.
Using Date.parse() you can convert a string representation of a date to a
numeric value as a number of milliseconds since January 1, 1970, 00:00:00
UTC.

Chapter 8

[203]

3. Once you have the total milliseconds, to get the days, hours, minutes, and
seconds you can take the following steps:

• To get days you can divide the number of milliseconds in a date,
removing the remainder with Math.floor().

• To get hours you can use modulus to capture just the remainder once
the total days are removed.

• To get minutes you can use the value of milliseconds in a minute and
using the modulus capture the remainder.

• Do the same for seconds by dividing the number by seconds in
milliseconds and getting the remainder. If you use Math.floor() you
can round down removing any remaining decimal places that will be
shown in the lower values.

4. Return all the values within an object with property names indicating what
the unit of time the values refer to.

5. Create a function to use a setTimeout() to run the update() function every
second (1,000 milliseconds). The update() function will create a variable that
can temporarily hold the object return values of countdown(), and create an
empty variable that will be used to create the output values.

6. Within the same function, using the for loop get all the properties and values
of the temp object variable. As you iterate through the object update the
output string to contain the property name and property value.

7. Using console.log(), print the output result string into the console.

Self-check quiz
1. Which method will decode the following?

var c = "http://www.google.com?id=1000&n=500";
var e = encodeURIComponent(c);

a. decodeURIComponent(e)

b. e.decodeUriComponent()

c. decoderURIComponent(c)

d. decoderURIComponent(e)

2. What will be output into the console from the following syntax?
const arr = ["hi","world","hello","hii","hi","hi World","Hi"];
console.log(arr.lastIndexOf("hi"));

Built-In JavaScript Methods

[204]

3. What is the result of the below code in the console?
const arr = ["Hi","world","hello","Hii","hi","hi World","Hi"];
arr.copyWithin(0, 3, 5);
console.log(arr);

4. What is the result of the below code in the console?
const arr = ["Hi","world","hello","Hii","hi","hi World","Hi"];
const arr2 = arr.filter((element,index)=>{
 const ele2 = element.substring(0, 2);
 return (ele2 == "hi");
});
console.log(arr2);

Summary
In this chapter we have dealt with many built-in methods. These are methods that
are handed to us by JavaScript and that we can use for things that we'll often need.
We went over the most used global built-in methods, which are so common they can
be used without being prepended by the object they belong to.

We also discussed array methods, string methods, number methods, math methods,
and date methods. You'll find yourself using these methods a lot and chaining them
(whenever they return a result) when you get more comfortable with JavaScript.

Now we've become familiar with many of JavaScript's core features, we'll spend the
next couple of chapters diving into how it works alongside HTML and the browser
to bring web pages to life!

[205]

9
The Document Object Model

The Document Object Model (DOM) is a lot more exciting than it may sound
at first. In this chapter, we will introduce you to the DOM. This is a fundamental
concept you will need to understand before working with JavaScript on web pages. It
grabs an HTML page and turns it into a logical tree. If you do not know any HTML,
no worries. We start with an HTML crash course section that you can skip if you are
familiar with HTML.

Once we are sure that we are on the same page with HTML knowledge, we will
introduce you to the Browser Object Model (BOM). The BOM holds all the methods
and properties for JavaScript to interact with the browser. This is information related
to previous pages visited, the size of the window of the browser, and also the DOM.

The DOM contains the HTML elements on the web page. With JavaScript, we can
select and manipulate parts of the DOM. This leads to interactive web pages instead
of static ones. So, long story short, being able to work with the DOM means you're
able to create interactive web pages!

We will cover the following topics:

• HTML crash course
• Introducing the BOM
• Introducing the DOM
• Types of DOM elements
• Selecting page elements

We can imagine you cannot wait to get started, so let's dive into it.

The Document Object Model

[206]

HTML crash course
Hyper-Text Markup Language (HTML) is the language that shapes the content of
web pages. Web browsers understand HTML code and represent it in the format we
are used to seeing: web pages. Here is a little very basic HTML example:

<!DOCTYPE html>
<html>
 <head>
 <title>Tab in the browser</title>
 </head>
 <body>
 <p>Hello web!</p>
 </body>
</html>

This is what this basic web page looks like:

Figure 9.1: Basic website

HTML code consists of elements. These elements contain a tag and attributes. We
will explain these fundamental concepts in the coming sections.

HTML elements
As you can see, HTML consists of words between <angle brackets>, or elements.
Any element that gets opened needs to be closed. We open with <elementname> and
we close with </elementname>.

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 9

[207]

Everything in between that is part of the element. There are a few exceptions with
regards to the closing, but you will run into them at your own pace. In the previous
example we had multiple elements, including these two. It is an element with the tag
body and an inner element with the tag p:

 <body>
 <p>Hello web!</p>
 </body>

So elements can contain inner elements. Elements can only be closed if all inner
elements have been closed. Here is an example to demonstrate that. Here is the right
way:

<outer>
 <sub>
 <inner>
 </inner>
 </sub>
</outer>

And here is the wrong way:

<outer>
 <sub>
 <inner>
 </sub>
 </inner>
</outer>

Please note, these are just made-up element names. In the last example, we close
sub before we have closed the inner element. This is wrong; you must always close
the inner elements before closing the outer element. We call inner elements child
elements, and outer elements parent elements. Here is some correct HTML:

<body>
 <div>
 <p>
 </p>
 </div>
</body>

The Document Object Model

[208]

This isn't correct HTML, because the div is closed before its inner element p:

<body>
 <div>
 <p>
 </div>
 </p>
</body>

The different elements represent different pieces of layout. The p we just saw
represents paragraphs. And another common one is h1, which represents a big
title. What is more important is to know the three major building elements of every
HTML page. The HTML element, the head element, and the body element.

In the HTML element, all the HTML takes place. You can only have one of these in
your HTML page. It is the outer element, and all other elements are housed in it. It
contains the other two top-level elements: head and body. If you are ever confused
about the order of head and body, just think of a human; the head is on top of the
body.

In the head element, we arrange a lot of things that are meant for the browser and not
for the user. You can think of certain metadata, such as which JavaScript scripts and
which stylesheets need to be included, and what the searching engine should use
as a description on the search result page. We will not really be doing a lot with the
head element as JavaScript developers, other than including scripts.

Here's an example of a basic head element:

<head>
 <title>This is the title of the browser tab</title>
 <meta name="description" content="This is the preview in google">
<script src="included.js"></script>
</head>

The body element is mostly the content that will appear on the web page. There can
only be one body element in the HTML element. Titles, paragraphs, images, lists,
links, buttons, and many more are all elements that we can come across in the body.
They have their own tag, so for example, img for image and a for a link. Here is a
table including common tags for in the body. It is definitely not an exhaustive list.

Chapter 9

[209]

Tag to open Tag to end Description
<p> </p> Used to create a paragraph.
<h1> </h1> Used to create a header; smaller headers are h2 to h6.

 Generic inline container for content that needs to be separated,
for example, for layout purposes.

<a> Used for hyperlinks.
<button> </button> Used for buttons.
<table> </table> Creates a table.
<tr> </tr> Creates a table row, must be used inside a table.
<td> </td> Creates a table data cell inside a row.
 Unordered lists, with bullet points, for example.
 Ordered lists with numbers.
 List items for inside ordered and unordered lists.

<div> </div>
Section inside the HTML page. It is often used as a container
for other styles or sections and can easily be used for special
layouts.

<form> <form> Creates an HTML form.

<input> </input>
Creates an input field in which the user can enter information.
These can be textboxes, checkboxes, buttons, passwords,
numbers, dropdowns, radio buttons, and much more.

<input /> None
Same as input, but written without a closing tag, the / at
the end makes it self-closing. This is only possible for a few
elements.

 None Used to make a line break (go to a new line). It does not need
an end tag and is therefore an exception.

Can you figure out what this HTML example does:

<html>

<head>
 <title>Awesome</title>
</head>

<body>
 <h1>Language and awesomeness</h1>
 <table>

The Document Object Model

[210]

 <tr>
 <th>Language</th>
 <th>Awesomeness</th>
 </tr>
 <tr>
 <td>JavaScript</td>
 <td>100</td>
 </tr>
 <tr>
 <td>HTML</td>
 <td>100</td>
 </tr>
 </table>
</body>

</html>

It creates a web page, with Awesome in the tab title. And on the page, it has a big
header saying Language and awesomeness. Then there is a table with three rows and
two columns. The first row contains the headers Language and Awesomeness. The
second row holds the values JavaScript and 100, and the third row holds the values
HTML and 100.

HTML attributes
The last part of HTML that we will discuss in this crash course is HTML attributes.
Attributes influence the element they are specified on. They exist inside the element
they are specified on and are assigned a value using an equal sign. For example, the
attribute of a (which indicates a hyperlink) is the href. This specifies where the link is
redirecting to:

Ask Google

This displays a link with the text Ask Google. And when you click it, you will be sent
to Google, which can be told by the value of the href attribute. This modifies the a
element. There are many attributes out there, but for now you just need to know that
they modify the element they are specified on.

Here is a table with an overview of the most important attributes to get started with
HTML and JavaScript. Why these are important will unfold somewhere in the next
chapter.

Chapter 9

[211]

Attribute name Description Can be used on which element?

id Gives an element a unique ID, such as
age. All of them

name Used to give a custom name to an
element.

input, button, form, and quite
a few we haven't seen yet

class
Special metadata that can be added to
an element. This can result in a certain
layout or JavaScript manipulation.

Almost all of them inside body

value Sets the initial value of the element it is
added to.

button, input, li, and a few we
haven't seen yet

style Gives a specified layout to the HTML
element it is added to. All of them

We will introduce you to other attributes when you will need them for practicing
your JavaScript magic.

Okay, this has been one of the more brief HTML crash courses out there. There are
many great resources to find more information. If you need more information or
explanation at this point, create and open an HTML file like the following and take it
from there!

<!DOCTYPE html >
<html>

<body>
 Ask google
</body>

</html>

We will now go ahead and have a look at the BOM and the different parts of the
BOM.

The BOM
The BOM, sometimes also called the window browser object, is the amazing "magic"
element that makes it possible for your JavaScript code to communicate with the
browser.

The Document Object Model

[212]

The window object contains all the properties required to represent the window of
the browser, so for example, the size of the window and the history of previously
visited web pages. The window object has global variables and functions, and these
can all be seen when we explore the window object. The exact implementation of the
BOM depends on the browser and the version of the browser. This is important to
keep in mind while working your way through these sections.

Some of the most important objects of the BOM we will look into in this chapter are:

• History
• Navigator
• Location

As well as the preceding useful objects, we will also consider the DOM in more
detail. But first, we can explore the BOM and see the objects of it with the command
console.dir(window). We will enter this in the console of our browser. Let's discuss
how to get there first.

We can access the HTML elements and the JavaScript if we go to the inspection panel
of our browser. It differs a bit in how you get there, but often the F12 button while in
the browser will do the trick, or else a right-click on the website you want to see the
console for and clicking on Inspect element or Inspect on a macOS device.

You should see a side panel (or if you have changed your settings, a separate
window) pop up.

Figure 9.2: Inspecting a page in the browser

Chapter 9

[213]

Navigate to the Console tab, which is next to the Elements tab in the image above.
You can type the following command and press Enter to get information about the
window object:

console.dir(window);

This command will produce a view like the following:

Figure 9.3: Part of the output of console.dir(window) showing the window browser object

The console.dir() method shows a list of all the properties of the specified object.
You can click on the little triangles to open the objects and inspect them even more.

The BOM contains many other objects. We can access these like we saw when
we dealt with objects, so for example, we can get the length of the history (in my
browser) accessing the history object of the window and then the length of the
history object, like this:

window.history.length;

After the exercise, we will learn more about the history object.

The Document Object Model

[214]

Practice exercise 9.1
1. Go back to the website you were just viewing and execute the command

console.dir(window).
2. Can you find the document object that is nested within the window object?

Under the root of the window object in the console, you can navigate down to
the object that is named document.

3. Can you find the height and width (in pixels) of your window? You can
return the inner and outer window.

Window history object
The window browser object also contains a history object. This object can actually
be written without the prefix of window because it has been made globally available,
so we can get the exact same object by using the console.dir(window.history) or
simply the console.dir(history) command in the console:

Figure 9.4: History object

Chapter 9

[215]

This object is actually what you can use to go back to a previous page. It has a built-
in function for that called go. What happens when you execute this command?

window.history.go(-1);

Go ahead and try it for yourself in the console of your browser (make sure that you
did visit multiple pages in that tab).

Window navigator object
In the window object that we just saw, there is a navigator property. This property
is particularly interesting because it contains information about the browser we are
using, such as what browser it is and what version we are using, and what operating
system the browser is running on.

This can be handy for customizing the website for certain operating systems. Imagine
a download button that will be different for Windows, Linux, and macOS.

You can explore it using this command in the console:

console.dir(window.navigator);

As you can see, we start with accessing the window, because navigator is an object
of the window object. So it is a property of the window object, which we specify with
the dot in between. In other words, we access these window objects in the same way
we do any other object. But, in this case, as navigator is also globally available, we
can also access this without window in front of it with this command:

console.dir(navigator);

The Document Object Model

[216]

Here is what the navigator object might look like:

Figure 9.5: The navigator object

Window location object
Another rather interesting and unique property of window is the location object.
This contains the URL of the current web page. If you override (parts of) that
property, you force the browser to go to a new page! How to do this exactly differs
per browser, but the next exercise will guide you through this.

Chapter 9

[217]

The location object consists of a few properties. You can see them by using the
command console.dir(window.location) or console.dir(location) in the console.
Here is what the output will look like:

Figure 9.6: The location object

There are many objects on the location object, just as with the others we have seen.
We can access the nested objects and properties using dot notation (like for other
objects we have seen). So, for example, in this browser I can enter the following:

location.ancestorOrigins.length;

This will get the length of the ancestorOrigins object, which represents how many
browsing contexts our page is associated with. This can be useful to determine
whether the web page is framed in an unexpected context. Not all browsers have this
object though; again, this BOM and all the elements of it vary per browser.

Follow the steps in the practice exercise to do such magic yourself.

Practice exercise 9.2
Travel through the window object to get to the location object, then output the values
of the protocol and href properties of the current file, into the console.

The DOM
The DOM is actually not very complicated to understand. It is a way of displaying
the structure of an HTML document as a logical tree. This is possible because of the
very important rule that inner elements need to be closed before outer elements get
closed.

The Document Object Model

[218]

Here is an HTML snippet:

<html>
 <head>
 <title>Tab in the browser</title>
 </head>
 <body>
 <h1>DOM</h1>
 <div>
 <p>Hello web!</p>
 Here's a link!
 </div>
 </body>
</html>

And here is how we can translate it to a tree:

Figure 9.7: Tree structure of the DOM of a very basic web page

As you can see, the most outer element, html, is at the top of the tree. The next
levels, head and body, are its children. head has only one child: title. body has two
children: h1 and div. And div has two children: p and a. These are typically used
for paragraphs and links (or buttons). Clearly, complex web pages have complicated
trees. This logical tree and a bunch of extra properties make up a web page's DOM.

Chapter 9

[219]

The DOM of a real web page wouldn't fit on a page in this book. But if you can draw
trees like these in your head, it will be of great help soon.

Additional DOM properties
We can inspect the DOM in a similar fashion as we did the others. We execute
the following command in the console of our website (again, the document object
is globally accessible, so accessing it through the window object is possible but not
necessary):

console.dir(document);

In this case, we want to see the document object, which represents the DOM:

Figure 9.8: The DOM

You really do not need to understand everything you are seeing here, but it is
showing many things, among which are the HTML elements and JavaScript code.

Great, right now you have got the basics of the BOM down, and its child object that
is most relevant to us right now, the DOM. We saw many properties of the DOM
earlier already. For us, it is most relevant to look at the HTML elements in the DOM.
The DOM contains all the HTML elements of a web page.

These basics of DOM elements, combined with some knowledge of manipulating
and exploring the DOM, will open up so many possibilities.

The Document Object Model

[220]

In the next chapter, we will focus on traversing the DOM, finding elements in the
DOM, and manipulating the DOM. The code we will be writing there will really start
to look like proper projects.

Selecting page elements
The document object contains many properties and methods. In order to work with
elements on the page, you'll first have to find them. If you need to change the value
of a certain paragraph, you'll have to grab this paragraph first. We call this selecting
the paragraph. After selecting, we can start changing it.

To select page elements to use within your JavaScript code and in order to
manipulate elements, you can use either the querySelector() or querySelectorAll()
method. Both of these can be used to select page elements either by tag name, ID, or
class.

The document.querySelector() method will return the first element within the
document that matches the specified selectors. If no matching page elements are
found, the result null is returned. To return multiple matching elements, you can
use the method document.querySelectorAll().

The querySelectorAll() method will return a static NodeList, which represents a
list of the document's elements that match the specified group of selectors. We will
demonstrate the usage of both querySelector() and querySelectorAll() with the
following HTML snippet:

<!doctype html>
<html>
 <head>
 <title>JS Tester</title>
 </head>
 <body>
 <h1 class="output">Hello World</h1>
 <div class="output">Test</div>
 </body>
</html>

We are going to select the h1 element with querySelector(). Therefore, if there is
more than one, it will just grab the first:

const ele1 = document.querySelector("h1");
console.dir(ele1);

Chapter 9

[221]

If you want to select multiple elements, you can use querySelectorAll(). This
method is going to return all the elements that match the selector in an array. In this
example, we are going to look for instances of the output class, which is done by
prepending the class name with a dot.

const eles = document.querySelectorAll(".output");
console.log(eles);

After selecting, you can start using the dynamic features of the DOM: you can
manipulate the elements using JavaScript. Content can be changed in the same way
a variable's contents can be, elements can be removed or added, and styles can be
adjusted. This can all be done with JavaScript and the way the user interacts with
the page can affect this. We have seen the two most common methods to select in the
DOM here, querySelector() and querySelectorAll(). You can actually select any
element you might need with these. There are lots more, which you'll encounter in
the next chapter, along with many of the ways the DOM can be manipulated.

Practice exercise 9.3
Select a page element and update the content, change the style, and add attributes.
Create an HTML file containing a page element with a class of output using the
following code template:

<!DOCTYPE html >
<html>

<div class="output"></div>
 <script>
 </script>

</html>

Within the script tags, make the following changes to the output element:

1. Select the page element as a JavaScript object.
2. Update the textContent property of the selected page element.
3. Using the classList.add object method, add a class of red to the element.
4. Update the id property of the element to tester.
5. Through the style object, add a backgroundColor property of red to the page

element.

The Document Object Model

[222]

6. Get the document URL via document.URL and update the text of the output
element to contain the value of the document URL. You can log it in the
console first to ensure you have the correct value.

Chapter project

Manipulating HTML elements with JavaScript
Take the HTML code below:

<div class="output">
 <h1>Hello</h1>
 <div>Test</div>

 <li id="one">One
 <li class="red">Two

 <div>Test</div>
</div>

Take the following steps (and experiment further) to understand how HTML
elements can be manipulated with JavaScript code.

1. Select the element with the class output.
2. Create another JavaScript object called mainList and select only the ul tag

that is within the output element. Update the ID of that ul tag to mainList.
3. Search for the tagName of each div, and output them into the console as an

array.
4. Using a for loop, set the ID of each of the div tags to id with a numeric value

of the order they appear within output. Still within the loop, alternate the
color of the contents of each element in output to be red or blue.

Self-check quiz
1. Go to your favorite website and open the browser console. Type document.

body. What do you see in the console?
2. As we know, with objects, we can write to the property value and assign a

new value with the assignment operator. Update the textContent property
of the document.body object on a web page of your choosing to contain the
string Hello World.

Chapter 9

[223]

3. Use what we learned about objects to list out BOM object properties and
values. Try it on the document object.

4. Now do the same for the window object.
5. Create an HTML file with an h1 tag. Use JavaScript and select the page

element with the h1 tag and assign the element into a variable. Update the
textContent property of the variable to Hello World.

Summary
We started this chapter with the basics of HTML. We learned that HTML consists
of elements and that these elements can contain other elements. Elements have a
tag that specifies the type of element they are and they can have attributes that alter
the element or add some metadata to the element. These attributes can be used by
JavaScript.

We then had a look at the BOM, which represents the window of the browser that
is being used for the web page and contains other objects, such as the history,
location, navigator, and document objects. The document object is referred to as the
DOM, which is what you are most likely to be working with. The document contains
the HTML elements of the web page.

We also started to consider how we can select document elements and use these to
manipulate the web page. This is what we'll continue exploring in the next chapter!

[225]

10
Dynamic Element

Manipulation Using the DOM
Learning the difficult concepts of the previous chapter will be rewarded in this
chapter. We will take our DOM knowledge one step further and learn how to
manipulate the DOM elements on the page with JavaScript. First, we need to learn
how to navigate the DOM and select the elements we want. We will learn how we can
add and change attributes and values, and how to add new elements to the DOM.

You will also learn how to add style to elements, which can be used to make items
appear and disappear. Then we will introduce you to events and event listeners.
We will start easy, but by the end of this chapter you will be able to manipulate
web pages in many ways, and you will have the knowledge to create basic web apps.
The sky is the limit after getting this skill down.

Along the way, we will cover the following topics:

• Basic DOM traversing
• Accessing elements in the DOM
• Element click handler
• This and the DOM
• Manipulating element style
• Changing the classes of an element
• Manipulating attributes
• Event listeners on elements
• Creating new elements

Dynamic Element Manipulation Using the DOM

[226]

We have learned a lot about the DOM already. In order to interact with our web page
and create a dynamic web page, we have to connect our JavaScript skills to the DOM.

Basic DOM traversing
We can traverse the DOM using the document object that we saw in the previous
chapter. This document object contains all the HTML and is a representation of the
web page. Traversing over these elements can get you to the element you need in
order to manipulate it.

This is not the most common way to do it, but this will help understand how
it works later. And sometimes, you might actually find yourself needing these
techniques as well. Just don't panic: there are other ways to do it, and they will be
revealed in this chapter!

Even for a simple HTML piece there are already multiple ways to traverse the DOM.
Let's go hunting for treasure in our DOM. We start with this little HTML snippet:

<!DOCTYPE html>
<html>
 <body>
 <h1>Let's find the treasure</h1>
 <div id="forest">
 <div id="tree1">
 <div id="squirrel"></div>
 <div id="flower"></div>
 </div>
 <div id="tree2">
 <div id="shrubbery">
 <div id="treasure"></div>
 </div>
 <div id="mushroom">
 <div id="bug"></div>
 </div>
 </div>
 </div>
 </body>
</html>

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 10

[227]

We now want to traverse the DOM of this snippet to find the treasure. We can
do this by stepping into the document object and navigating our way from there
onwards. It is easiest to do this exercise in the console in the browser, because that
way you'll get direct feedback about where in the DOM you are.

We can start by using the body property from the document. This contains everything
that's inside the body element. In the console, we'll type:

console.dir(document.body);

We should get a really long object. There are a few ways from this object to get to our
treasure. To do so, let's discuss the children and childNodes property.

To get to the treasure using children you would have to use:

console.dir(document.body.children.forest.children.tree2.children.
shrubbery.children.treasure);

As you can see, on every element we select, we have to select the children again. So,
first, we grab the children from the body, then we select forest from these children.
Then from forest, we want to grab its children again, and from these children we
want to select tree2. From tree2 we want to grab the children again, from these
children we need shrubbery. And then finally, we can grab the children from
shrubbery and select treasure.

To get to the treasure using childNodes you would have to use your console a lot
because text and comment nodes are also in there. childNodes is an array, so you will
have to select the right index to select the right child. There is one advantage here: it
is a lot shorter because you won't need to select the name separately.

console.dir(document.body.childNodes[3].childNodes[3].childNodes[1].
childNodes[1]);

You could also combine them:

console.dir(document.body.childNodes[3].childNodes[3].childNodes[1].
children.treasure);

childNodes is more a complete term than children. Children
just contain all the HTML elements, so are really the nodes.
childNodes also contain text nodes and comments. With children,
however, you can use the ID, and therefore they are easier to use.

Dynamic Element Manipulation Using the DOM

[228]

There are many ways to traverse the document. Depending on what you need, you
might have to use one specific way. For tasks that require DOM traversing, it is
usually the case that if it is works, it is a good solution.

So far, we have seen how we can move down the DOM, but we can also move up.
Every element knows its parent. We can use the parentElement property to move
back up. For example, if we use the treasure HTML sample and type this into the
console:

document.body.children.forest.children.tree2.parentElement;

We are back at forest, since that is the parent element of tree2. This can be very
useful, in particular when combined with functions such as getElementById(),
which we will see later in more detail.

Not only can we move up and down, we can also move sideways. For example, if
we select tree2 like this:

document.body.children.forest.children.tree2;

We can get to tree1 using:

document.body.children.forest.children.tree2.previousElementSibling;

And from tree1 we can get to tree2 using:

document.body.children.forest.children.tree1.nextElementSibling;

As an alternative to nextElementSibling, which returns the next node that is an
element, you could use nextSibling, which will return the next node of any type.

Practice exercise 10.1
In this exercise, experiment with traversing the DOM hierarchy. You can use this
sample HTML website:

<!doctype html>
<html><head><title>Sample Webpage</title></head>
<body>
 <div class="main">
 <div>

 One
 Two

Chapter 10

[229]

 Three

 </div>
 <div>blue</div>
 <div>green</div>
 <div>yellow</div>
 <div>Purple</div>
 </div>
</body>
</html>

Take the following steps:

1. Create and open the above sample web page, or visit your favorite website,
and open the document body in the console with console.dir(document).

2. In the body.children property, select some of the child elements. View how
they match the page content.

3. Navigate to and output the next nodes or elements into the console.

Selecting elements as objects
Now we know how to traverse the DOM, we can make changes to the elements.
Instead of using console.dir(), we can just type in the path to the element we want
to change. We now have the element as a JavaScript object, and we can make changes
to all its properties. Let's use a simpler HTML page for this one.

<!DOCTYPE html>
<html>
 <body>
 <h1>Welcome page</h1>
 <p id="greeting">
 Hi!
 </p>
 </body>
</html>

We can traverse to the p element, for example, by using this code:

document.body.children.greeting;

This gives us the power to manipulate the properties of the element, and the element
itself, directly! Let's execute this newly gained power in the next section.

Dynamic Element Manipulation Using the DOM

[230]

Changing innerText
The innerText property focuses on the text between the opening and closing of the
element, like so:

<element>here</element>

The retrieved value would be here as plain text. For example, if we go to the console
and we type:

document.body.children.greeting.innerText = "Bye!";

The message that is displayed on the page changes from Hi! to Bye! immediately.
innerText returns the content of the element as plain text, which is not a problem in
this case because there is only text in there. However, if there is any HTML inside
the element you need to select, or if you want to add HTML, you cannot use this
method. It will interpret the HTML as text and just output it on the screen. So if we
executed this:

document.body.children.greeting.innerText = "<p>Bye!</p>";

It will output to the screen <p>Bye!</p>, with the HTML around it, as if it was
intended as a text string. To get around this, you need to use innerHTML.

Changing innerHTML
If you did not only want to work with plain text, or perhaps specify some HTML
formatting with your value, you could use the innerHTML property instead. This
property doesn't just process be plain text, it can also be inner HTML elements:

document.body.children.greeting.innerHTML = "Bye!";

This will display Bye! in bold on the screen, having taken the b element into account
rather than just printing it as if it were a single string value.

You were already promised that you could access elements in a more convenient
way than traversing the DOM. Let's see how exactly in the next section.

Accessing elements in the DOM
There are multiple methods to select elements from the DOM. After getting the
elements, we are able to modify them. In the following sections, we will discuss how
to get elements by their ID, tag name, and class name, and by CSS selector.

Chapter 10

[231]

Instead of traversing it step by step as we just did, we are going to use built-in
methods that can go through the DOM and return the elements that match the
specifications.

We are going to use the following HTML snippet as an example:

<!DOCTYPE html>
<html>
 <body>
 <h1>Just an example</h1>
 <div id="one" class="example">Hi!</div>
 <div id="two" class="example">Hi!</div>
 <div id="three" class="something">Hi!</div>
 </body>
</html>

Let's start by accessing elements by ID.

Accessing elements by ID
We can grab elements by ID with the getElementById() method. This returns one
element with the specified ID. IDs should be unique, as only one result will be
returned from the HTML document. There are not a lot of rules for valid IDs; they
cannot contain spaces and must be at least one character. As with the conventions
for naming variables, it is a best practice to make it descriptive and avoid special
characters.

If we want to select the element with an ID of two right away, we could use:

document.getElementById("two");

This would return the full HTML element:

<div id="two" class="example">Hi!</div>

To reiterate, if you have more than one element with the same ID, it will just give
you back the first one it encounters. You should avoid this situation in your code
though.

This is what the full file looks like with the JavaScript inside the HTML page, instead
of simply querying the browser console:

<html>
 <body>

Dynamic Element Manipulation Using the DOM

[232]

 <h1 style="color:pink;">Just an example</h1>
 <div id="one" class="example">Hi!</div>
 <div id="two" class="example">Hi!</div>
 <div id="three" class="something">Hi!</div>
 </body>
 <script>
 console.log(document.getElementById("two"));
 </script>
</html>

In this case, it would log the full HTML div with id="two" to the console.

Practice exercise 10.2
Try experimenting with getting elements by their IDs:

1. Create an HTML element and assign an ID in the element attribute.
2. Select the page element using its ID.
3. Output the selected page element into the console.

Accessing elements by tag name
If we ask for elements by tag name, we get an array as a result. This is because there
could be more than one element with the same tag name. It will be a collection of
HTML elements, or HTMLCollection, which is a special JavaScript object. It's basically
just a list of nodes. Execute the following command in the console:

document.getElementsByTagName("div");

It will give back:

HTMLCollection(3) [div#one.example, div#two.example, div#three.
something, one: div#one.example, two: div#two.example, three:
div#three.something]

As you can see, all the elements in the DOM with the div tag are returned. You
can read what the ID is and what the class is from the syntax. The first ones in the
collection are the objects: div is the name, # specifies the ID, and . specifies the class.
If there are multiple dots, there are multiple classes. Then you can see the elements
again (namedItems), this time as key-value pairs with their ID as the key.

Chapter 10

[233]

We can access them using the item() method to access them by index, like this:

document.getElementsByTagName("div").item(1);

This will return:

<div id="two" class="example">Hi!</div>

We can also access them by name, using the namedItem() method, like this:

document.getElementsByTagName("div").namedItem("one");

And this will return:

<div id="one" class="example">Hi!</div>

When there is only one match, it will still return an HTMLCollection. There is only
one h1 tag, so let's demonstrate this behavior:

document.getElementsByTagName("h1");

This will output:

HTMLCollection [h1]

Since h1 doesn't have an ID or class, it is only h1. And since it doesn't have an ID, it
is not a namedItem and is only in there once.

Practice exercise 10.3
Use JavaScript to select page elements via their tag name:

1. Start by creating a simple HTML file.
2. Create three HTML elements using the same tag.
3. Add some content within each element so you can distinguish between them
4. Add a script element to your HTML file, and within it select the page

elements by tag name and store them in a variable as an array
5. Using the index value, select the middle element and output it into the

console.

Dynamic Element Manipulation Using the DOM

[234]

Accessing elements by class name
We can do something very similar for class names. In our example HTML, we have
two different class names: example and something. If you get elements by class name,
it gives back an HTMLCollection containing the results. The following will get all
the elements with the class example:

document.getElementsByClassName("example");

This returns:

HTMLCollection(2) [div#one.example, div#two.example, one: div#one.
example, two: div#two.example]

As you can see, it only returned the div tags with the example class. It left out the div
with the something class.

Practice exercise 10.4
Select all matching page elements using the class name of the element.

1. Create a simple HTML file to work on.
2. Add three HTML elements adding the same class to each. You can use

different tags as long as the same element class is included. Add some
content within each element so you can distinguish between them.

3. Add a script element to your file, and within it select the page elements by
class name. Assign the resulting HTMLCollection values to a variable.

4. You can use an index value to select the individual HTMLCollection items,
just as you would for array items. Starting with an index of 0, select one
of the page elements with the class name and output the element into the
console.

Accessing elements with a CSS selector
We can also access elements using a CSS selector. We do this with querySelector()
and querySelectorAll(). We then give the CSS selector as an argument, and this
will filter the items in the HTML document and only return the ones that satisfy the
CSS selector.

The CSS selector might look a bit different than you might think at first. Instead of
looking for a certain layout, we use the same syntax as we use when we want to
specify a layout for certain elements. We haven't discussed this yet, so we will cover
it here briefly.

Chapter 10

[235]

If we state p as a CSS selector, it means all the elements with tag p. This would look
like this:

document.querySelectorAll("p");

If we say p.example, it means all the p tag elements with example as the class. They
can also have other classes; as long as example is in there, it will match. We can also
say #one, which means select all with an ID of one.

This method is the same result as getElementById(). Which one to use is a matter
of taste when all you really need to do is select by ID—this is great input for a
discussion with another developer. querySelector() allows for more complicated
queries, and some developers will state that getElementById() is more readable.
Others will claim that you might as well use querySelector() everywhere for
consistency. It doesn't really matter at this point, but try to be consistent.

Don't worry too much about all these options for now; there are many, and you'll
figure them out when you need them. This is how you can use the CSS selectors in
JavaScript.

Using querySelector()
This first option will select the first element that matches the query. So, enter the
following in the console, still using the HTML snippet introduced at the start of the
section:

document.querySelector("div");

It should return:

<div id="one" class="example">Hi!</div>

It only returns the first div, because that's the first one it encounters. We could also
ask for an element with the class .something. If you recall, we select classes using dot
notation like this:

document.querySelector(".something");

This returns:

<div id="three" class="something">Hi!</div>

With this method, you can only use valid CSS selectors: elements, classes, and IDs.

Dynamic Element Manipulation Using the DOM

[236]

Practice exercise 10.5
Use querySelector() to enable single element selection:

1. Create another simple HTML file.
2. Create four HTML elements adding the same class to each. They can be

different tag names as long as they have the class within the element
attribute.

3. Add some content within each element so you can distinguish between them.
4. Within a script element, use querySelector() to select the first occurrence

of the elements with that class and store it in a variable. If there is more than
one matching result in querySelector(), it will return the first one.

5. Output the element into the console.

Using querySelectorAll()
Sometimes it is not enough to return only the first instance, but you want to select all
the elements that match the query. For example when you need to get all the input
boxes and empty them. This can be done with querySelectorAll():

document.querySelectorAll("div");

This returns:

NodeList(3) [div#one.example, div#two.example, div#three.something]

As you can see, it is of object type NodeList. It contains all the nodes that match the
CSS selector. With the item() method we can get them by index, just as we did for
the HTMLCollection.

Practice exercise 10.6
Use querySelectorAll() to select all matching elements in an HTML file:

1. Create an HTML file and add four HTML elements, adding the same class to
each one.

2. Add some content within each element so you can distinguish between them.
3. Within a script element, use QuerySelectorAll() to select all the matching

occurrences of the elements with that class and store them in a variable.
4. Output all the elements into the console, first as an array and then looping

through them to output them one by one.

Chapter 10

[237]

Element click handler
HTML elements can do something when they are clicked. This is because a
JavaScript function can be connected to an HTML element. Here is one snippet in
which the JavaScript function associated with the element is specified in the HTML:

<!DOCTYPE html>
<html>
 <body>
 <div id="one" onclick="alert('Ouch! Stop it!')">Don't click here!
 </div>
 </body>
</html>

Whenever the text in the div gets clicked, a pop up with the text Ouch! Stop
it! opens. Here, the JavaScript is specified directly after onclick, but if there is
JavaScript on the page, you can also refer to a function that's in that JavaScript like
this:

<!DOCTYPE html>
<html>
 <body>
 <script>
 function stop(){
 alert("Ouch! Stop it!");
 }
 </script>
 <div id="one" onclick="stop()">Don't click here!</div>
 </body>
</html>

This code is doing the exact same thing. As you can imagine, with bigger functions
this would be a better practice. The HTML can also refer to scripts that get loaded
into the page.

There is also a way to add a click handler using JavaScript. We select the HTML
element we want to add the click handler to, and we specify the onclick property.

Here is a HTML snippet:

<!DOCTYPE html>
<html>
 <body>

Dynamic Element Manipulation Using the DOM

[238]

 <div id="one">Don't click here!</div>
 </body>
</html>

This code is at the moment not doing anything if you click it. If we want to
dynamically add a click handler to the div element, we can select it and specify the
property via the console:

document.getElementById("one").onclick = function () {
alert("Auch! Stop!");
}

As it's been added in the console, this functionality will be gone when you refresh
the page.

This and the DOM
The this keyword always has a relative meaning; it depends on the exact context
it is in. In the DOM, the special this keyword refers to the element of the DOM it
belongs to. If we specify an onclick to send this in as an argument, it will send in
the element the onclick is in.

Here is a little HTML snippet with JavaScript in the script tag:

<!DOCTYPE html>
<html>
 <body>
 <script>
 function reveal(el){
 console.log(el);
 }
 </script>
 <button onclick="reveal(this)">Click here!</button>
 </body>
</html>

And this is what it will log:

<button onclick="reveal(this)">Click here!</button>

As you can see, it is logging the element it is in, the button element.

Chapter 10

[239]

We can access the parent of this with a function like this:

function reveal(el){
 console.log(el.parentElement);
}

In the above example, the body is the parent of the button. So if we click the button
with the new function, it will output:

<body>
 <script>
 function reveal(el.parentElement){
 console.log(el);
 }
 </script>
 <button onclick="reveal(this)">Click here!</button>
 </body>

We could output any other property of the element the same way; for example,
console.log(el.innerText); would print the inner text value as we saw in the
Changing innerText section.

So, the this keyword is referring to the element, and from this element we can
traverse the DOM like we just learned. This can be very useful, for example, when
you need to get the value of an input box. If you send this, then you can read and
modify the properties of the element that triggered the function.

Practice exercise 10.7
Create a button within a basic HTML document and add the onclick attribute. The
example will demonstrate how you can reference object data with this:

1. Create a function to handle a click within your JavaScript code. You can
name the function message.

2. Add this to the onclick function parameters sending the current element
object data using this.

3. Within the message function, use console.dir() to output in the console the
element object data that was sent to the function using onclick and this.

4. Add a second button to the page also invoking the same function on the click.

Dynamic Element Manipulation Using the DOM

[240]

5. When the button is clicked, you should see the element that triggered the
click in the console, like so:

Figure 10.1: Implementing the onclick attribute

Manipulating element style
After selecting the right element from the DOM, we can change the CSS style that
applies to it. We can do this using the style property. This is how to do it:

1. Select the right element from the DOM.
2. Change the right property of the style property of this element.

We are going to make a button that will toggle the appearing and disappearing of
a line of text. To hide something using CSS, we can set the display property of the
element to none, like this for a p (paragraph) element:

p {
 display: none;
}

And we can toggle it back to visible using:

p {
 display: block;
}

We can add this style using JavaScript as well. Here is a little HTML and JavaScript
snippet that will toggle the displaying of a piece of text:

<!DOCTYPE html>
<html>

Chapter 10

[241]

 <body>
 <script>
 function toggleDisplay(){
 let p = document.getElementById("magic");
 if(p.style.display === "none") {
 p.style.display = "block";
 } else {
 p.style.display = "none";
 }
 }
 </script>
 <p id="magic">I might disappear and appear.</p>
 <button onclick="toggleDisplay()">Magic!</button>
 </body>
</html>

As you can see, in the if statement we are checking for whether it is currently
hiding, if it is hiding, we show it. Otherwise, we hide it. If you click the button and it
is currently visible, it will disappear. If you click the button when the text is gone, it
will appear.

You can do all sorts of fun things using this style element. What do you think this
does when you click the button?

<!DOCTYPE html>
<html>
 <body>
 <script>
 function rainbowify(){
 let divs = document.getElementsByTagName("div");
 for(let i = 0; i < divs.length; i++) {
 divs[i].style.backgroundColor = divs[i].id;
 }
 }
 </script>
 <style>
 div {
 height: 30px;
 width: 30px;
 background-color: white;
 }
 </style>

Dynamic Element Manipulation Using the DOM

[242]

 <div id="red"></div>
 <div id="orange"></div>
 <div id="yellow"></div>
 <div id="green"></div>
 <div id="blue"></div>
 <div id="indigo"></div>
 <div id="violet"></div>
 <button onclick="rainbowify()">Make me a rainbow</button>
 </body>
</html>

This is what you see when you first open the page:

Figure 10.2: A button that will do wonderful things when it is clicked

And when you click the button:

Figure 10.3: Beautiful rainbow made by JavaScript at the click of a button

Chapter 10

[243]

Let's go over this script to see how works. First of all, there are a few div tags in
the HTML that all have the ID of a certain color. There is a style tag specified in
HTML, which gives a default layout to these div tags of 30px by 30px and a white
background.

When you click the button, the rainbowify() JavaScript function is executed. In this
function the following things are happening:

1. All the div elements get selected and stored in an array, divs.
2. We loop over this divs array.
3. For every element in the divs array, we are setting the backgroundColor

property of style to the ID of the element. Since all the IDs represent a color,
we see a rainbow appear.

As you can imagine, you can really have a lot of fun playing around with this. With
just a few lines of code, you can make all sorts of things appear on the screen.

Changing the classes of an element
HTML elements can have classes, and as we have seen, we can select elements by the
name of the class. As you may remember, classes are used a lot for giving elements a
certain layout using CSS.

With JavaScript, we can change the classes of HTML elements, and this might trigger
a certain layout that is associated with that class in CSS. We are going to have a look
at adding classes, removing classes, and toggling classes.

Adding classes to elements
This might sound a bit vague, so let's have a look at an example where we are going
to add a class to an element, which in this case will add a layout and make the
element disappear.

<!DOCTYPE html>
<html>
 <body>
 <script>
 function disappear(){
 document.getElementById("shape").classList.add("hide");
 }
 </script>

Dynamic Element Manipulation Using the DOM

[244]

 <style>
 .hide {
 display: none;
 }

 .square {
 height: 100px;
 width: 100px;
 background-color: yellow;
 }

 .square.blue {
 background-color: blue;
 }
 </style>
 <div id="shape" class="square blue"></div>

 <button onclick="disappear()">Disappear!</button>
 </body>
</html>

In this example, we have some CSS specified in the style tag. Elements with the hide
class have a display: none style, meaning they are hidden. Elements with the square
class are 100 by 100 pixels and are yellow. But when they have both the square and
blue class, they are blue.

When we click on the Disappear! button, the disappear() function gets called. This
one is specified in the script tag. The disappear() function changes the classes by
getting the classList property of the element with the ID shape, which is the square
we are seeing. We are adding the hide class to the classList and because of this, the
elements get the display: none layout and we can no longer see it.

Removing classes from elements
We can also remove a class. If we remove the hide class from the classList, for
example, we could see our element again because the display: none layout no
longer applies.

In this example, we are removing another class. Can you figure out what will happen
if you press the button by looking at the code?

Chapter 10

[245]

<!DOCTYPE html>
<html>
 <body>
 <script>
 function change(){
 document.getElementById("shape").classList.remove("blue");
 }
 </script>
 <style>
 .square {
 height: 100px;
 width: 100px;
 background-color: yellow;
 }

 .square.blue {
 background-color: blue;
 }
 </style>
 <div id="shape" class="square blue"></div>

 <button onclick="change()">Change!</button>
 </body>
</html>

When the button gets pressed, the change function gets triggered. This function
removes the blue class, which removes the blue background color from the layout,
leaving us with the yellow background color and the square will turn yellow.

You may wonder why the square was blue in the first place since it had two layouts
for background-color assigned to it with the CSS. This happens with a points system.
When a styling is more specific, it gets more points. So, specifying two classes with
no space in between means that it applies to elements with these two classes. This is
more specific than pointing at one class.

Referring to an ID in CSS, #nameId, gets even more points and
would be prioritized over class-based layouts. This layering allows
for less duplicate code, but it can become messy, so always make
sure to combine the CSS and the HTML well to get the desired
layout.

Dynamic Element Manipulation Using the DOM

[246]

Toggling classes
In some cases, you would want to add a class when it doesn't already have that
particular class, but remove it when it does. This is called toggling. There is a special
method to toggle classes. Let's change our first example to toggle the hide class so the
class will appear when we press the button the second time, disappear the third time,
and so on. The blue class was removed to make it shorter; it's not doing anything in
this example other than making the square blue.

<!DOCTYPE html>
<html>
 <body>
 <script>
 function changeVisibility(){
 document.getElementById("shape").classList.toggle("hide");
 }
 </script>
 <style>
 .hide {
 display: none;
 }

 .square {
 height: 100px;
 width: 100px;
 background-color: yellow;
 }
 </style>
 <div id="shape" class="square"></div>

 <button onclick="changeVisibility()">Magic!</button>
 </body>
</html>

Pressing the Magic! button will add the class to the classList when it isn't there and
remove it when it is there. This means that you can see the result every time you
press the button. The square keeps appearing and disappearing.

Chapter 10

[247]

Manipulating attributes
We have seen already that we can change the class and style attributes, but there is a
more general method that can be used to change any attribute. Just a quick reminder,
attributes are the parts in HTML elements that are followed by equals signs. For
example, this HTML link to Google:

Ask my
friend here.

The attributes in this example are id, class, and href. Other common attributes are
src and style, but there are many others out there.

With the setAttribute() method, we can add or change attributes on an element.
This will change the HTML of the page. If you inspect the HTML in the browser you
will see that the changed attributes are visible. You can do this from the console and
see the result easily, or write another HTML file with this built in as a function. In
this HTML snippet, you will see it in action:

<!DOCTYPE html>
<html>
 <body>
 <script>
 function changeAttr(){
 let el = document.getElementById("shape");
 el.setAttribute("style", "background-color:red;border:1px solid
black");
 el.setAttribute("id", "new");
 el.setAttribute("class", "circle");

 }
 </script>
 <style>
 div {
 height: 100px;
 width: 100px;
 background-color: yellow;
 }

Dynamic Element Manipulation Using the DOM

[248]

 .circle {
 border-radius: 50%;
 }
 </style>
 <div id="shape" class="square"></div>

 <button onclick="changeAttr()">Change attributes...</button>
 </body>
</html>

This is the page before clicking the button:

Figure 10.4: Page with a yellow square div

After clicking the button, the HTML of the div becomes:

<div id="new" class="circle" style="background-color:red;border:1px
solid black"></div>

As you can see, the attributes are changed. The id has changed from shape to new.
The class has changed from square to circle and a style has been added. It will
look like this:

Figure 10.5: Page with a red circle with a black line around it

This is a very powerful tool that can be used to interact with the DOM in very
many ways. Think, for example, of a tool that can be used to create images, or even
postcards. Beneath the surface, there is a lot of manipulating going on.

Chapter 10

[249]

Practice exercise 10.8
Creating custom attributes: using an array of names, the following code will update
the element's HTML, adding HTML code using the data from the array. The items
within the array will be output to the page as HTML code. The user will be able to
click the page elements and they will display the page element attribute values.

Figure 10.6: Creating custom attributes with an array of names

As the HTML will start getting more complex from now on, and we're only trying to
test your JavaScript, we will provide HTML templates to use where needed. You can
use the following HTML template and provide your answer as the completed script
element:

<!DOCTYPE html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>

It is important to note here that JavaScript interacts with the DOM
and not with the HTML file—therefore, the DOM is the one that
gets changed. If you click the button again, you'll get an error
message in the console because no element with id="shape" is
found in the DOM, and as a result we try to call a method on a null
value.

Dynamic Element Manipulation Using the DOM

[250]

 <div id="message"></div>
 <div id="output"></div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Create an array of names. You can add as many as you want—all the string
values will be output onto the page within a table.

2. Select the page elements as JavaScript objects.
3. Add a function and also invoke that function within the JavaScript code. The

function can be called build() as it will be building the page content. Within
the build function, you will be setting up the HTML in a table.

4. Create a table named html, and within the tags, loop through the contents of
the array and output the results into the html table.

5. Add a class called box to one of the cells that has the index value of the item
from the array, adding the same class to the elements for each additional
row.

6. As you create the HTML for the elements within the tr element, create an
attribute called data-row in the main row element that includes the index
value of the item from the array. In addition, add another attribute within the
element called data-name that will contain the text output.

7. Within the attribute of the same tr element, also add onclick to invoke a
function named getData passing the current element object as this into the
function parameter.

8. Add the table of HTML code to the page.
9. Create a function named getData that will be invoked once the HTML tr

elements are clicked. Once the tr element is clicked, use getAttribute to get
the attribute values of the row value and the contents of the text output and
store them in different variables.

10. Using the values in the attributes stored in the preceding step, output the
values into the message element on the page.

11. Once the user clicks the element on the page, it will display the details
coming from the element attributes within the element with the id of
message.

Chapter 10

[251]

Event listeners on elements
Events are things that happen on a web page, like clicking on something, moving the
mouse over an element, changing an element, and there are many more. We have
seen how to add an onclick event handler already. In the same way, you can add an
onchange handler, or an onmouseover handler. There is one special condition, though;
one element can only have one event handler as an HTML attribute. So, if it has an
onclick handler, it cannot have an onmouseover handler as well. At this point, we
have only seen how to add event listeners using HTML attributes like this:

<button onclick="addRandomNumber()">Add a number</button>

There is a way to register event handlers using JavaScript as well. We call these event
listeners. Using event listeners, we can add multiple events to one element. This way,
JavaScript is constantly checking, or listening, for certain events to the elements on
the page. Adding event listeners is a two-step process:

1. Select the element you want to add an event to
2. Use the addEventListener("event", function) syntax to add the event

Even though it is two steps, it can be done in one line of code:

document.getElementById("square").addEventListener("click",
changeColor);

This is getting the element with the ID square and adding the changeColor function
as the event for whenever it gets clicked. Note that when using event listeners, we
remove the on prefix from the event type. For example, click here references the
same event type as onclick, but we have removed the on prefix.

Let's consider another way to add an event listener (don't worry, we will review
these methods in detail in Chapter 11, Interactive Content and Event Listeners) by
setting the event property of a certain object to a function.

There is a fun fact here—event listeners often get added during
other events!

Dynamic Element Manipulation Using the DOM

[252]

We could reuse our trusty onclick listener in this context, but another common one
is when the web page is done loading with onload:

window.onload = function() {
 // whatever needs to happen after loading
 // for example adding event listeners to elements
}

This function will then be executed. This is common for window.onload, but less
common for many others, such as onclick on a div (it is possible though). Let's look
at an example of the first event listener we looked at on a web page. Can you figure
out what it will be doing when you click on the square?

<!DOCTYPE html>
<html>
 <body>
 <script>
 window.onload = function() {
 document.getElementById("square").addEventListener("click",
changeColor);
 }
 function changeColor(){
 let red = Math.floor(Math.random() * 256);
 let green = Math.floor(Math.random() * 256);
 let blue = Math.floor(Math.random() * 256);
 this.style.backgroundColor = `rgb(${red}, ${green}, ${blue})`;
 }
 </script>
 <div id="square" style="width:100px;height:100px;background-
color:grey;">Click for magic</div>
 </body>
</html>

The web page starts with a gray square with the text Click for magic in it. After
the web page is done loading, an event gets added for this square. Whenever it
gets clicked, the changeColor function will be executed. This function uses random
variables to change the color using RGB colors. Whenever you click the square, the
color gets updated with random values.

You can add events to all sorts of elements. We have only used the click event so
far, but there are many more. For example, focus, blur, focusin, focusout, mouseout,
mouseover, keydown, keypress, and keyup. These will be covered in the next chapter,
so keep going!

Chapter 10

[253]

Practice exercise 10.9
Try an alternative way to implement similar logic to Practice exercise 10.7. Use the
following HTML code as a template for this exercise, and add the contents of the
script element:

<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div>
 <button>Button 1</button>
 <button>Button 2</button>
 <button>Button 3</button>
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Select all the page buttons into a JavaScript object.
2. Loop through each button, and create a function within the button scope

called output.
3. Within the output() function, add a console.log() method that outputs

the current object's textContent. You can reference the current parent object
using the this keyword.

4. As you loop through the buttons attach an event listener that when clicked
invokes the output() function.

Creating new elements
In this chapter, you have seen so many cool ways to manipulate the DOM already.
There is still an important one missing, the creation of new elements and adding
them to the DOM. This consists of two steps, first creating new elements and second
adding them to the DOM.

Dynamic Element Manipulation Using the DOM

[254]

This is not as hard as it may seem. The following JavaScript does just that:

let el = document.createElement("p");
el.innerText = Math.floor(Math.random() * 100);
document.body.appendChild(el);

It creates an element of type p (paragraph). This is a createElement() function that
is on the document object. Upon creation, you need to specify what type of HTML
element you would want to create, which in this case is a p, so something like this:

<p>innertext here</p>

And as innerText, it is adding a random number. Next, it is adding the element as
a new last child of the body. You could also add it to another element; just select the
element you want to add it to and use the appendChild() method.

Here, you can see it incorporated in a HTML page. This page has a button, and
whenever it gets pressed, the p gets added.

<!DOCTYPE html>
<html>
 <body>
 <script>
 function addRandomNumber(){
 let el = document.createElement("p");
 el.innerText = Math.floor(Math.random() * 100);
 document.body.appendChild(el);
 }
 </script>
 <button onclick="addRandomNumber()">Add a number</button>
 </body>
</html>

Here is a screenshot of this page after having pressed the button five times.

Chapter 10

[255]

Figure 10.7: Random numbers after pressing the button five times

Once we refresh the page, it's empty again. The file with the source code doesn't
change and we're not storing it anywhere.

Practice exercise 10.10
Shopping list: Using the following HTML template, update the code to add new
items to the list of items on the page. Once the button is clicked, it will add a new
item to the list of items:

<!DOCTYPE html>
<html>
<head>
 <title>Complete JavaScript Course</title>
 <style>
 </style>
</head>
<body>
 <div id="message">Complete JavaScript Course</div>
 <div>
 <input type="text" id="addItem">
 <input type="button" id="addNew" value="Add to List"> </div>

Dynamic Element Manipulation Using the DOM

[256]

 <div id="output">
 <h1>Shopping List</h1>
 <ol id="sList">
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Select the page elements as JavaScript objects.
2. Add an onclick event listener to the add button. Once the button is clicked,

it should add the contents of the input field to the end of the list. You can call
the function addOne().

3. Within addOne(), create li elements to append to the main list on the page.
Add the input value to the list item text content.

4. Within the addOne() function, get the current value of the addItem input field.
Use that value to create a textNode with that value, adding it to the list item.
Append the textNode to the list item.

Chapter projects

Collapsible accordion component
Build a collapsing and expanding accordion component that will open page
elements, hiding and showing content when the title tab is clicked. Using the
following HTML as a template, add the completed script element and create the
desired functionality with JavaScript:

<!doctype html>
<html>
<head>
 <title>JS Tester</title>
 <style>
 .active {
 display: block !important;
 }

Chapter 10

[257]

 .myText {
 display: none;
 }
 .title {
 font-size: 1.5em;
 background-color: #ddd;
 }
 </style>
</head>
<body>
 <div class="container">
 <div class="title">Title #1</div>
 <div class="myText">Just some text #1</div>
 <div class="title">Title #2</div>
 <div class="myText">Just some text #2</div>
 <div class="title">Title #3</div>
 <div class="myText">Just some text #3</div>
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Using querySelectorAll(), select all the elements with a class of title.
2. Using querySelectorAll(), select all the elements with a class of myText.

This should be the same number of elements as the title elements.
3. Iterate through all the title elements and add event listeners that, once

clicked, will select the next element siblings.
4. Select the element on the click action and toggle the classlist of the

element with the class of active. This will allow the user to click the element
and hide and show the below content.

5. Add a function that will be invoked each time the elements are clicked that
will remove the class of active from all the elements. This will hide all the
elements with myText.

Dynamic Element Manipulation Using the DOM

[258]

Interactive voting system
The below code will create a dynamic list of people that can be clicked, and it will
update the corresponding value with the number of times that name was clicked. It
also includes an input field that will allow you to add more users to the list, each of
which will create another item in the list that can be interacted with the same as the
default list items.

Figure 10.8: Creating an interactive voting system

Use the following HTML code as a template to add JavaScript to, and provide your
answer as the completed script element.

<!DOCTYPE html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>
 <div id="message">Complete JavaScript Course</div>
 <div>
 <input type="text" id="addFriend">
 <input type="button" id="addNew" value="Add Friend">
 </div>
 <table id="output"></table>
 <script>

 </script>
</body>
</html>

Chapter 10

[259]

Take the following steps:

1. Create an array of people's names called myArray. This will be the default
original list of names.

2. Select the page elements as JavaScript objects so they can easily be selected
within the code.

3. Add event listener to the Add Friend button. Once clicked, this will get the
value from the input field and pass the values to a function that will add
the friend list to the page. Additionally, add the new friend's name into the
people's names array you created. Get the current value in the input field and
push that value into the array so the array matches the values on the page.

4. Run a function to build the content on the page, using the forEach() loop get
all the items within the array and add them to the page. Include 0 as a default
for the vote count, as all individuals should start on zero votes.

5. Create a main function that will create the page elements, starting with the
parent table row, tr. Then create three table cell, td, elements. Add content to
the table cells, including the vote count in the last column, the person name
in the middle, and the index plus 1 in the first column.

6. Append the table cells to the table row and append the table row to the
output area on the page.

7. Add an event listener that will increase the vote counter for that row when
the user clicks.

8. Get the text content from the last column in the row. It should be the value
of the current counter. Increment the counter by one and make sure the
datatype is a number so you can add to it.

9. Update the last column with the new click counter.

Hangman game
Create a Hangman game using arrays and page elements. You can use the following
HTML template:

<!doctype html>
<html><head>
 <title>Hangman Game</title>
 <style>
 .gameArea {

Dynamic Element Manipulation Using the DOM

[260]

 text-align: center;
 font-size: 2em;
 }
 .box,
 .boxD {
 display: inline-block;
 padding: 5px;
 }
 .boxE {
 display: inline-block;
 width: 40px;
 border: 1px solid #ccc;
 border-radius: 5px;
 font-size: 1.5em;
 }
 </style>
</head>
<body>
 <div class="gameArea">
 <div class="score"> </div>
 <div class="puzzle"></div>
 <div class="letters"></div>
 <button>Start Game</button>
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Set up an array that contains some words or phrases that you want to use in
the game.

2. In JavaScript, create a main game object containing a property to contain the
current word solution, and another property to contain the array of letters
of the solution. It should also create an array to contain the page elements
and correspond with the values of the index values of each letter from the
solution, and finally add a property to count the number of letters left to
solve and end the game when needed.

3. Select all the page elements into variables so they are easier to access in the
code.

Chapter 10

[261]

4. Add an event listener to the Start Game button, making it clickable, and
when it gets clicked it should launch a function called startGame().

5. Within startGame(), check if the words array has any words left. If it does,
then hide the button by setting the .display object to none. Clear the game
contents and set the total to 0. Within the current word in the game object,
assign a value, which should be the response of shift() from the array
containing the in-game words.

6. In the game solution, convert the string into an array of all the characters in
the word solution using split().

7. Create a function called builder() that can be used to build the game board.
Invoke the function within the startGame() function once all the game values
are cleared and set.

8. Create a separate function that you can use to generate page elements. In the
parameters, get the type of element, the parent that the new element will be
appended to, the output content for the new element, and a class to add to
the new element. Using a temporary variable, create the element, add the
class, append to the parent, set the textContent, and return the element.

9. In the builder() function, which will also get invoked once startGame() is
run, clear the innerHTML from the letters and puzzle page elements.

10. Iterate through the game solution array, getting each letter of the solution.
Use the builder() function to generate page elements, add an output value
of -, set a class, and append it to the main puzzle page element.

11. Check if the value is blank, and if it is, clear textContent and update the
border to white. If it's not blank, increment the total so that it reflects the total
number of letters that must be guessed. Push the new element into the game
puzzle array.

12. Create a new function to update the score so that you can output the current
number of letters left. Add it to the builder() function.

13. Create a loop to represent the 26 letters of the alphabet. You can generate
the letter by using an array containing all the letters. The string method
fromCharCode() will return the character from the numeric representation.

14. Create elements for each letter, adding a class of box and appending it to the
letters page element. As each element gets created, add an event listener
that runs a function called checker().

15. Once the letter gets clicked, we need to invoke the checker() function, which
will remove the main class, add another class, remove the event listener, and
update the background color. Also invoke a function called checkLetter(),
passing the value of the clicked letter into the argument.

Dynamic Element Manipulation Using the DOM

[262]

16. The checkLetter() function will loop through all the solution letters. Add a
condition to check if the solution letter is equal to the letter selected by the
player. Make sure to convert the inputted letter to uppercase so that you can
match the letters accurately. Update the matching letters in the puzzle using
the game puzzle array and the index from the letter in the solution. The index
values will be the same on each, which provides an easy way to match the
visual representation with what is in the array.

17. Subtract one from the game global object that tracks the total letters left to be
solved, invoke the updatescore() function to check if the game is over, and
update the score. Set the textContent of the puzzle to the letter removing the
original dash.

18. In the updatescore() function, set the score to the number of letters left. If the
total left is less than or equal to zero, the game is over. Show the button so
that the player has an option for the next phrase.

Self-check quiz
1. What output will the following code produce?

 <div id="output">Complete JavaScript Course </div>
 <script>
 var output = document.getElementById('output');
 output.innerText = "Hello
 World";
 </script>

2. What output will be seen within the browser page?
 <div id="output">Complete JavaScript Course </div>
 <script>
 document.getElementById('output').innerHTML = "Hello

 World";
 </script>

3. What will be seen in the input field from the following code?
 <div id="output">Hello World</div>
 <input type="text" id="val" value="JavaScript">
 <script>
 document.getElementById('val').value = document.
getElementById('output').innerHTML;
 </script>

Chapter 10

[263]

4. In the following code, what is output into the console when the element with
the word three gets clicked? What is the output when the element with the
word one gets clicked?

<div class="holder">
 <div onclick="output('three')">Three
 <div onclick="output('two')">Two
 <div onclick="output('one')">One</div>
 </div>
 </div>
 </div>
<script>
 function
 output(val) {
 console.log(val);
 }
</script>

5. What line of code needs to be added to remove the event listener when the
button is clicked in the following code?

<div class="btn">Click Me</div>
<script>
 const btn = document.querySelector(".btn");
 btn.addEventListener("click", myFun);
 function myFun() {
 console.log("clicked");

 }
</script>

Summary
In this chapter, we really took our web skills to the next level. Manipulating the
DOM allows all kinds of interactions with the web page, meaning that the web page
is no longer a static event.

We started off by explaining the dynamic web and how to traverse the DOM. After
having walked over the elements manually, we learned that there's an easier way
to select elements in the DOM with the getElementBy…() and the querySelector()
methods. After having selected them, we had the power to modify them, add new
elements to them, and do all sorts of things using the elements we selected. We
started with some more basic HTML handlers, and we could assign a function to,
for example, the onclick attribute of the HTML element.

Dynamic Element Manipulation Using the DOM

[264]

We also accessed the clicked element using the this argument that was sent in as a
parameter, and we could modify it in different ways, for example, by changing the
style property. We also saw how to add classes to an element, create new elements,
and add them to the DOM. And finally, we worked with event listeners on elements
that really took our dynamic web pages to the next level. With event listeners, we can
specify more than one event handler for a certain element. All these new skills allow
us to create amazing things in the web browser. You can actually create complete
games now!

The next chapter will take your event handler skills to the next level and will
enhance your ability to create interactive web pages even further (and make it a bit
easier as well!).

[265]

11
Interactive Content and

Event Listeners
You are now familiar with the basic manipulation of the Document Object Model
(DOM). In the last chapter, we had a look at events, and we saw that event listeners
are constantly monitoring for whether a certain event is taking place; when it does
occur, the specified event (a function) gets invoked.

In this chapter, we are going to take this knowledge one step further and use event
listeners to create interactive web content. This chapter is really going to complete
your DOM knowledge. We are going to cover the following topics:

• Interactive content
• Specifying events
• The onload event handler
• The mouse event handler
• The event target property
• DOM event flow
• onchange and onblur
• The key event handler
• Drag and drop elements
• Form submission
• Animating elements

Interactive Content and Event Listeners

[266]

Introducing interactive content
Interactive content is content that responds to the actions of a user. Think, for
example, of a web app in which you can create postcards dynamically, or play a
game on a website in a web browser.

This interactive content is made possible by changing the DOM based on user
interactions. These interactions could be anything: entering text in an input field,
clicking somewhere on the page, hovering over a certain element with the mouse, or
a certain input with the keyboard. All these are called events. We have seen events
already. But there is actually more to it!

Specifying events
There are three ways to specify events. We have seen each of these in the previous
chapter, but let's run through them again now. One is HTML-based and the other
two are JavaScript-based. For this example, we are going to use the click event as
an example.

Specifying events with HTML
First, the HTML way:

<p id="unique" onclick="magic()">Click here for magic!</p>

The great thing about specifying events this way is that it's quite easy to read this
code and predict what it is going to do. As soon as you click on the paragraph, the
function magic() will be triggered. There are some downsides too: you can only
specify one event this way, and you cannot change the event dynamically either.

Specifying events with JavaScript
Here is the first way to do it using JavaScript.

document.getElementById("unique").onclick = function() { magic(); };

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 11

[267]

What is happening here is that we are getting the property that represents the
selected event and assigning our function to it. So, in this case, we are selecting the
p shown in the previous section by its attribute value unique, grabbing the onclick
property, and assigning the magic() function to it by wrapping it in an anonymous
function. We could also specify the exact function on the spot here. We can overwrite
this with another function anytime, making the event that can be fired more
dynamic.

We can also specify different events now, which we cannot do with HTML. So
we could also give it a keyup, keydown, or mouseover event, for example—we will
consider each of these event types in this chapter.

Practice exercise 11.1
Personalize your web pages. Allow users to change the theme of the page display
between regular mode and dark mode.

1. Within a simple HTML document, set up a Boolean value variable to use that
will toggle the color modes.

2. Use window.onclick to set up a function that outputs a message in the
console when clicked. You can use the value of the Boolean variable.

3. Within the function, add a condition that checks whether the darkMode
variable is true or false.

4. If false, then update the page style to a background color of black and a font
color of white.

5. Add an else response that changes the color of the background to white and
the color of the text to black. Also, update the value of the darkMode variable
accordingly.

Specifying events with event listeners
The last method is using the addEventListener() method to add an event to an
element. With this, we can specify multiple functions for the same event, for
example, when an element gets clicked.

If we wanted to specify event triggers for all the elements of the
page, we could do so in a loop for a cleaner coding style.

Interactive Content and Event Listeners

[268]

What is striking for both methods we have looked at—using HTML events and
assigning to properties—is that the event gets prefixed with on. For example,
onclick, onload, onfocus, onblur, onchange, etc. This is not the case when we use
the addEventListener() method, where we specify the event type within the event
listener without the on prefix, as here, with an alternative to onclick:

document.getElementById("unique").addEventListener("click", magic);

Please note that we are leaving out the parentheses behind the magic function here.
We cannot send in parameters like this. If that is something you have to do, you'd
have to wrap the functionality in an anonymous function, like this:

document.getElementById("unique").addEventListener("click", function()
{ magic(arg1, arg2) });

In this chapter, we may use any of these ways to specify an event. We will mostly
be using one of the JavaScript options, though.

Practice exercise 11.2
Create several divs with color names in textContent. Add JavaScript to add
click event listeners to each element, and as each element is clicked, update the
background color of the body to match the color name in the div.

The onload event handler
We briefly saw this event handler in the previous chapter. The onload event gets
fired after a certain element is loaded. This can be useful for a number of reasons. For
example, if you want to select an element using getElementById, you'll have to be
sure this element is loaded in the DOM already. This event is most commonly used
on the window object, but it can be used on any element. When you use it on window,
this event gets started when the window object is done loading. Here is how to use it:

window.onload = function() {
 // whatever needs to happen after the page loads goes here
}

onload is similar, but it's different for the window and document objects. The
difference depends on the web browser you are using. The load event fires at the
end of the document loading process. Therefore, you will find that all the objects
in the document are in the DOM and the assets have finished loading.

Chapter 11

[269]

You can also use the addEventListener() method on any element to handle any
event. And it can also be used for the event that all the content in the DOM is loaded.
There is a special built-in event for this: DOMContentLoaded(). This event can be used
to handle the event of the DOM loading, which will get fired immediately after the
DOM for the page has been constructed when the event is set. Here is how to set it:

document.addEventListener("DOMContentLoaded", (e) => {
 console.log(e);
});

This will log to the console when all the DOM content has been loaded. As an
alternative, you will also often see it in the body tag, like this:

<body onload="unique()"></body>

This is assigning a function called unique() to the body, and it will fire off when
the body is done loading. You cannot combine addEventListener() and the HTML
by using them together. One will overwrite the other, depending on the order of
the web page. If you need two events to happen when the DOM is loaded, you will
need two addEventListener() calls in your JavaScript.

Practice exercise 11.3
Using a basic HTML file, the below exercise will demonstrate the order of loading for
the window object and the document object using DOMContentLoaded, which is an event
that fires once the document object content is loaded in the browser. The window
object will load afterward, even if the window.onload statement comes first.

1. Within a basic HTML file, create a function named message that requires two
parameters, the first one being a string value for the message and the second
an event object. Within the function, output into the console using console.
log the event and the message.

2. Using the window object, attach an onload function to the event object. Invoke
the function, passing a string value of Window Ready and the event object to
the message function for output.

3. Create a second function to capture the DOM content loading, and add an
event listener listening for DOMContentLoaded to the document object. Once
that event is triggered, pass the event object and a string value of Document
Ready to the message output function.

4. Change the order of the event listeners, placing the document event statement
prior to the window onload: does it make a difference in the output?

Interactive Content and Event Listeners

[270]

5. Using the document object, add the DOMContentLoaded event listener, which
will send to the function the arguments of Document Ready and the event
object that was triggered.

6. Run the script and see which event is triggered first; change the order of the
events to see if the output sequence changes.

Mouse event handlers
There are different mouse event handlers. Mouse events are actions of the mouse.
These are the ones we have:

• ondblclick: when the mouse is double-clicked
• onmousedown: when the mouse clicks on top of an element without the click

being released
• onmouseup: when the mouse click on top of an element is released
• onmouseenter: when the mouse moves onto an element
• onmouseleave: when the mouse leaves an element and all of its children
• onmousemove: when the mouse moves over an element
• onmouseout: when the mouse leaves an individual element
• onmouseover: when the mouse hovers over an element

Let's have a look at one of these in practice. What do you think this does?

<!doctype html>
<html>
 <body>
 <div id="divvy" onmouseover="changeColor()" style="width: 100px;
height: 100px; background-color: pink;">
 <script>
 function changeColor() {
 document.getElementById("divvy").style.backgroundColor =
"blue";
 }
 </script>
 </body>
</html>

If you go with your mouse over the pink square (the div with id divvy), it turns blue
immediately. This is because onmouseover is added in the HTML and points to the
JavaScript function that changes the color of the square.

Chapter 11

[271]

Let's look at a similar slightly more complicated example.

<!doctype html>
<html>
 <body>
 <div id="divvy" style="width: 100px; height: 100px; background-
color: pink;">
 <script>
 window.onload = function donenow() {
 console.log("hi");
 document.getElementById("divvy").addEventListener("mousedown",
function() { changeColor(this, "green"); });
 document.getElementById("divvy").addEventListener("mouseup",
function() { changeColor(this, "yellow"); });
 document.getElementById("divvy").addEventListener("dblclick",
function() { changeColor(this, "black"); });
 document.getElementById("divvy").addEventListener("mouseout",
function() { changeColor(this, "blue"); });
 }
 console.log("hi2");

 function changeColor(el, color) {
 el.style.backgroundColor = color;
 }
 </script>
 </body>
</html>

We are still starting with the pink square. There are four event listeners connected to
this div:

• mousedown: when the button is pressed on the mouse but is not yet released,
the square will turn green.

• mouseup: as soon as the mouse button gets released, the square will turn
yellow.

• dblclick: this is a favorite. What do you think will happen upon a double-
click? A double-click contains two mousedown events and two mouseup events.
Before the second mouseup, it is not a double-click. So, the square will get the
colors green, yellow, green, black (and then stay black until another event is
fired).

• mouseout: when the mouse leaves the square, it turns blue and stays blue
until one of the three above events is fired again.

Interactive Content and Event Listeners

[272]

This allows for a lot of interaction. You can do so many things with this. Just to
give you an example of a thing you can do, say you want to have a very dynamic,
mouseover-driven, product-help decision tool. It will consist of four columns, and
the content of the last three columns (from the right) is dynamic content. The first
column is for categories. The second column contains some more specific product
categories for each category. The third column consists of individual products, and
the fourth column shows product information. This requires a lot of event listeners,
and lots of deletion and addition of listeners.

Practice exercise 11.4
Our aim is to change the background color of the element on the page as the various
mouse events occur. On mousedown over the element, the element will turn green.
When the mouse is over the element, it will turn red. As the mouse moves out of the
element boundaries, the color will turn yellow. When the mouse is clicked, the color
will go green, and when the mouse is released, it will change to blue. The actions also
be logged in the console.

1. Create a blank element on the page and assign a class to it.
2. Select the element using its class name.
3. Assign a variable to the element object from the page.
4. Update the content of the element to say hello world.
5. Using the style properties of the element, update the height and width, then

add a default background color to it.
6. Create a function to handle two arguments, the first being a color value as a

string and the second being the event object of the trigger.
7. In the function, output the color value to the console, and for the event,

output the event type to the console.
8. Add event listeners to the element: mousedown, mouseover, mouseout, and

mouseup. For each of these events, send two arguments to the function that
you created: a color value and the event object.

9. Run the code and try it in your browser.

The event target property
Whenever an event gets fired, an event variable becomes available. It has many
properties, and you can check it out by using this command in the function that
gets fired for the event:

console.dir(event);

Chapter 11

[273]

This will show many properties. One of the most interesting properties for now is the
target property. The target is the HTML element that fired the event. So, we can use
it to get information from a web page. Let's look at a simple example.

<!doctype html>
<html>
 <body>
 <button type="button" onclick="triggerSomething()">Click</button>
 <script>
 function triggerSomething() {
 console.dir(event.target);
 }
 </script>
 </body>
</html>

In this case, event.target is the button element. In the console, the button element
and all its properties will be logged, including potential siblings and parents.

A use case where parent properties can come in handy is in the case of HTML forms,
where there are multiple input fields and a button. A button in a form would often
have the form as its direct parent. Via this parent, data from the input fields can be
fetched. This is demonstrated in the following example:

<!doctype html>
<html>
 <body>
 <div id="welcome">Hi there!</div>
 <form>
 <input type="text" name="firstname" placeholder="First name" />
 <input type="text" name="lastname" placeholder="Last name" />
 <input type="button" onclick="sendInfo()" value="Submit" />
 </form>
 <script>
 function sendInfo() {
 let p = event.target.parentElement;
 message("Welcome " + p.firstname.value + " " + p.lastname.
value);
 }

 function message(m) {
 document.getElementById("welcome").innerHTML = m;
 }

Interactive Content and Event Listeners

[274]

 </script>
 </body>
</html>

This results in a little form, like this:

Figure 11.1: Basic HTML form

And once you enter data in the fields and hit Submit, this is what it looks like:

Figure 11.2: Data entered in the basic HTML form with a dynamic welcome message

With this command, event.target[CIT] is the HTML button:

let p = event.target.parentElement;

The parent element of the button, the form in this case, gets stored in the p variable. p
is the parent and it represents the form element. So, this command will get the value
of the input box:

p.firstname.value;

Similarly, p.lastname.value gets the last name. We haven't seen this yet, but with
the value property, you can get the values of input elements.

Next, both input values are combined and sent to the message() function. This
function changes the inner HTML of the div to a personalized welcome message,
which is why Hi there! changes to Welcome Maaike van Putten.

Practice exercise 11.5
Change the text in a div element on the page. This exercise will demonstrate how
you can get the value from an input field and place it within a page element. It also
covers tracking button clicks and details about the event target. You can use the
following HTML document as a template, to which you can add JavaScript:

<!doctype html>
<html>
<head>

Chapter 11

[275]

 <title>JS Tester</title>
</head>
<body>
 <div class="output"></div>
 <input type="text" name="message" placeholder="Your Message">
 <button class="btn1">Button 1</button>
 <button class="btn2">Button 2</button>
 <div>
 <button class="btn3">Log</button>
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Using the above HTML as a template, add the JavaScript code, selecting each
page element, including the div, the input field, and the button element.
Assign these element objects to variables in your code.

2. Create an empty array called log, which will be used to track and log all the
events.

3. Create a function that will capture the event object details in an object,
adding it to the log array. Get the event target and create an object, adding it
to the array that stores the input value at the time, the type of event, the class
name of the target element, and the tag name of the target element.

4. Within the logging function, get the value of the content within the input and
assign that value to the textContent of the div.

5. Clear the div content after the information is added to the log array.
6. Add an event listener to both of the first two buttons that sends the event

object to the tracking function created in the earlier steps.
7. Attach an event listener to the third button that outputs the log content to the

console.

DOM event flow
Let's go over what happens when you click on an element that has multiple elements
associated with it.

Interactive Content and Event Listeners

[276]

We are going to create nested div elements. In order to illustrate this, there is a style
added to the body. It is actually better to add this style in a head tag, and even better
to have a separate CSS file, but this is a bit shorter to read. This is what the nested div
elements will look like:

Figure 11.3: Event bubbling in web page

And below is the code associated with it. The script is on the bottom and will be
executed when the parts on top are done. It is going to add event listeners to every
div, and what it will do is log the innerText. For the outermost element of the nested
div elements, this would be 12345, with a new number on every line.

So the question here is, how will it trigger the events? Say we click on the 5, what
will be executed? The event of all of the nested div elements, or only the one from 5?
And if it is going to execute all of them, will it execute them from inner to outer event
or the other way around?

<!DOCTYPE html>
<html>
 <body>
 <style>
 div {
 border: 1px solid black;
 margin-left: 5px;
 }
 </style>
 <div id="message">Bubbling events</div>
 <div id="output">
 1
 <div>
 2
 <div>
 3
 <div>
 4

Chapter 11

[277]

 <div>5</div>
 </div>
 </div>
 </div>
 </div>
 <script>
 function bubble() {
 console.log(this.innerText);
 }
 let divs = document.getElementsByTagName("div");
 for (let i = 0; i < divs.length; i++) {
 divs[i].addEventListener("click", bubble);
 }
 </script>
 </body>
</html>

In this case, it has the default behavior. It will execute all five events, so each one
of every nested div. And it will execute them inside out. So it will start with the
innerText of only 5, then 45, until the last one, 12345:

Figure 11.4: Console output event bubbling

Interactive Content and Event Listeners

[278]

This is called event bubbling. It's what happens when you trigger the handlers on an
element. It runs its own events first, then its parents, and so on. It is called bubbling
because it goes up from the inner event to the outer, like water bubbles going up.

You can alter this behavior by adding true as a third argument when you add the
event listener like this:

divs[i].addEventListener("click", bubble, true);

This would be the result:

Figure 11.5: Console output event capturing

This moving from the outer element to the inner element is called event capturing. It
is not used a lot anymore nowadays, but if you do need to implement it, you can use
the useCapture argument of addEventListener() (the third argument) and set it to
true. It is false by default.

The event capturing and bubbling allows us to apply a principle called event
delegation. Event delegation is the concept where instead of adding event handlers
to every element in a certain block of HTML, we define a wrapper and add the event
to this wrapper element, and it then applies to all the child elements as well. You'll
apply this principle in the next exercise.

Practice exercise 11.6
This example will demonstrate event capturing and the delegation of page elements.
By adding event listeners to the parent and children within the main element, this
example will order the console messages according to the event capture properties.

Chapter 11

[279]

All of the div elements with a class of box will have the same event object. We can
add the event target, textcontent, as well into the console so that we can tell which
element was clicked.

Use the following template:

<!doctype html>
<html>
<head>
 <title>JS Tester</title>
 <style>
 .box {
 width: 200px;
 height: 100px;
 border: 1px solid black
 }
 </style>
</head>
<body>
 <div class="container">
 <div class="box" id="box0">Box #1</div>
 <div class="box" id="box1">Box #2</div>
 <div class="box" id="box2">Box #3</div>
 <div class="box" id="box3">Box #4</div>
 </div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. In the JavaScript code, select all the elements with the classes, and separately
select the main container element.

2. Add event listeners to the main container, outputting to the console value
of 4 for the useCapture argument set to false, and 1 for the useCapture
argument set to true.

3. For each of the nested elements, add click event listeners with a console.
log() value of 3 for the useCapture argument set to false, and 2 for
useCapture set to true.

Interactive Content and Event Listeners

[280]

4. Click the page elements to see the event delegation and order of output on
the page.

5. Within the box elements on both click events, add to the console an output
for the event target's textContent value.

onchange and onblur
Two other events that are often combined with input boxes are onchange and onblur.
onchange gets triggered when an element changes, for example, when the value of
an input box changes. onblur gets triggered when an object goes out of focus; for
example, when you have the cursor in one input box and the cursor goes to another
input box, the onblur event of the first input box will get triggered.

Here is an example of both in practice; it's an HTML snippet of the body of a web
page. The inputs contain onblur and onchange, and there is an extra function.

<!DOCTYPE html>
<html>
 <body>
 <div id="welcome">Hi there!</div>
 <form>
 <input type="text" name="firstname" placeholder="First name"
onchange="logEvent()" />
 <input type="text" name="lastname" placeholder="Last name"
onblur="logEvent()" />
 <input type="button" onclick="sendInfo()" value="Submit" />
 </form>
 <script>
 function logEvent() {
 let p = event.target;
 if (p.name == "firstname") {
 message("First Name Changed to " + p.value);
 } else {
 message("Last Name Changed to " + p.value);
 }
 }

 function sendInfo() {
 let p = event.target.parentElement;
 message("Welcome " + p.firstname.value + " " + p.lastname.
value);
 }

Chapter 11

[281]

 function message(m) {
 document.getElementById("welcome").innerHTML = m;
 }
 </script>
 </body>
</html>

The firstname input box has an onchange event. If the value of the data in the input
box gets changed, this event gets triggered as soon as the input box loses focus.
If the input box loses focus when the value has not changed, nothing happens for
onchange. This is not true for onblur, which is assigned to the lastname input box.
Even when the value hasn't changed, the event will get triggered.

Another event that is often used with input boxes is onfocus, or simply focus when
used in combination with an event listener. This event is associated with the cursor
entering the input box, and it gets fired when the input box gets focused on by the
cursor and input can be entered.

Practice exercise 11.7
With two input fields on the page, JavaScript will listen for changes to the content
in the input field. Once the input field is not in focus, if the value has been changed,
the change event will be invoked. blur and focus are also added to the input fields
and will get logged to the console as those events occur. Both input elements will
have the same event listeners, and as you change the content of the input fields and
remove focus, the output text content will update using the values of the input field
that triggered the event.

Use the following HTML template:

<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div class="output1">
 </div>

 <input type="text" placeholder="First Name" name="first">

 <input type="text" placeholder="Last Name" name="last">

 <script>

Interactive Content and Event Listeners

[282]

 </script>
</body>
</html>

Now take the following steps:

1. Within the JavaScript code, put the HTML output element into a variable
object that you can use to display content on the page.

2. Select both input fields. You can use querySelector() and
"input[name='first']", which will allow you to make your selection using
the input field name.

3. Add an event listener to the first input and the second input. The event
listener should be a change event to track changed values. This will only be
invoked if the value in the field is changed and you click off the input field.

4. Create a separate function to handle the output of the content to the page,
updating the textContent of the output element.

5. Send the values of the input fields as they get changed to the output element
textContent.

6. Add four additional event listeners and listen for blur and focus on each
input. Once the event gets triggered, output in the console the value of the
event type.

Key event handler
There are several key events. One of them is onkeypress. onkeypress gets triggered,
well, you may have guessed this, whenever a key gets pressed. Pressing means here
when the button is pressed and released. If you want an event to happen as soon as
the button is pressed (so before releasing), you can use the onkeydown event. If you
want the event to happen on release, you can use the onkeyup event.

There are many things we can do with key events. For example, we can restrict what
characters can be entered in an input box. Every time a key gets pressed, we can
check the character and decide whether it gets to stay.

We can get the key that triggered the event using:

event.key;

Chapter 11

[283]

The following HTML code has two input boxes. Can you see what is happening
here?

<!doctype html>
<html>
 <body>
 <body>
 <div id="wrapper">JavaScript is fun!</div>
 <input type="text" name="myNum1" onkeypress="numCheck()">
 <input type="text" name="myNum2" onkeypress="numCheck2()">
 <script>
 function numCheck() {
 message("Number: " + !isNaN(event.key));
 return !isNaN(event.key);
 }

 function numCheck2() {
 message("Not a number: " + isNaN(event.key));
 return isNaN(event.key);
 }

 function message(m) {
 document.getElementById('wrapper').innerHTML = m;
 }
 </script>
 </body>
</html>

The first one checks if a value is a number, and if it is a number, it will write
Number: true at the top; else, it will write Number: false at the top. The second one
is checking for if a value is not a number; if it is not a number, it will write Not a
number: true; else, it will write Not a number: false.

So this is one way of using the onkeypress event, but we can do even more. We can
add a return statement to our onkeypress event, like this:

onkeypress="return numCheck2()";

If true is returned, the key value gets added to the input box; if false is returned,
the key value is not added.

Interactive Content and Event Listeners

[284]

The following code snippet only allows numbers to be entered in the input box.
Whenever the user tries to type something else, the function restricts it.

<!doctype html>
<html>
 <body>
 <body>
 <div id="wrapper">JavaScript is fun!</div>
 <input type="text" name="myNum1" onkeypress="return numCheck()"
onpaste="return false">
 <input type="text" name="myNum2" onkeypress="return numCheck2()"
onpaste="return false">
 <script>
 function numCheck() {
 message(!isNaN(event.key));
 return !isNaN(event.key);
 }

 function numCheck2() {
 message(isNaN(event.key));
 return isNaN(event.key);
 }

 function message(m) {
 document.getElementById("wrapper").innerHTML = m;
 }
 </script>
 </body>
</html>

As you can see, return gets included in onkeypress to ensure that only numbers can
be entered. One other thing might have caught your eye: onpaste="return false".
This is to deal with smart people who copy and paste numbers to a non-numeric
field or other characters to a numeric field and still manage to get illegal characters
in there.

Practice exercise 11.8
By recognizing key presses and detecting the values of characters as key presses
occur with the element in focus, we can also detect if content is pasted into an input
field.

Chapter 11

[285]

1. Create two input fields within your HTML. Add an element to output
content too.

2. Using JavaScript, select the page elements. You can assign a variable called
output to the element with a class of output. Create another variable, eles,
and select all the input fields (using querySelectorAll()) as its value. This
way, we can loop through the node list and assign the same events to all the
matching elements.

3. Using forEach(), iterate through all the input elements from the page. Add
the same event listeners to all of them.

4. Add a keydown event listener and check if the value is a number. If it is a
number, then add it to the output area.

5. On keyup, output to the console the value of the key.
6. Check if there was a paste in the input field; if there was, then you can output

the word paste to the console.

Drag and drop elements
There are also special event handlers for dragging and dropping. We need a starting
point to be able to drag and drop something. Let's create the CSS and HTML for a
dragging and dropping area.

<!doctype>
<html>
 <head>
 <style>
 .box {
 height: 200px;
 width: 200px;
 padding: 20px;
 margin: 0 50px;
 display: inline-block;
 border: 1px solid black;
 }

 #dragme {
 background-color: red;
 }
 </style>
 </head>

Interactive Content and Event Listeners

[286]

 <body>
 <div class="box">1</div>
 <div class="box">2</div>
 </body>
</html>

Now we are also going to include an element that is going to be dragged and
dropped. In order to mark an element as something that can be dragged, we need to
add the attribute draggable. This is the code we are going to include in our second
div, with the first div around it:

 <div class="box"> 1
 <div id="dragme" draggable="true">
 Drag Me Please!
 </div>
 </div>

Then we need to decide what we are going to do when we drop the draggable
element. We need to specify this within the box it can be dragged to. We are going to
add the functionality to both boxes, so it can be dragged over to one and back to the
other.

<div class="box" ondrop="dDrop()" ondragover="nDrop()">
 1
 <div id="dragme" ondragstart="dStart()" draggable="true">
 Drag Me Please!
 </div>
 </div>
<div class="box" ondrop="dDrop()" ondragover="nDrop()">2</div>

And here is the script that will be added to the end of the body:

 <script>
 let holderItem;

 function dStart() {
 holderItem = event.target;
 }

 function nDrop() {
 event.preventDefault();
 }

Chapter 11

[287]

 function dDrop() {
 event.preventDefault();
 if (event.target.className == "box") {
 event.target.appendChild(holderItem);
 }
 }
 </script>

We start by specifying a variable in the script for the item that we want to hold when
dragging. When the ondragstart event gets triggered, we are going to store the
element that is being dragged in the holderItem variable. Normally, when you drag,
dropping is not allowed by the design of HTML. In order to allow the drop, you'll
have to prevent the default event that means the item you want to drop cannot be
dropped. You can do this with:

event.preventDefault();

Usually, before you prevent the default behavior, you would do some checks to
see whether the element that is being dropped can be accepted at that place. In the
example above, we check whether the class name of the element that it is being
dropped to is box. If that's the case, we append holderItem as a child to the box.

We have created a page that allows moving an HTML element from one box to
another. If you try to release it anywhere else, the element goes back instead to its
previous location.

Practice exercise 11.9
This will be an "I'm not a robot" check. Drag and drop can be used to ensure that it's
a live user that is acting on a page rather than a robot. This exercise will demonstrate
how to create a visual dragging effect on an active element, in which the user clicks
the mouse down to create a drag action, and once the mouse button is released, the
drop event occurs. The successful actions are logged to the console.

You can use the following template:

<!doctype html>
<html>
<head>
 <title>JS Tester</title>
 <style>
 .box {

Interactive Content and Event Listeners

[288]

 width: 100px;
 height: 100px;
 border: 1px solid black;
 background-color: white;
 }
 .red {
 background-color: red;
 }
 </style>
</head>
<body>
 <div class="box">1
 <div id="dragme" draggable="true">
 Drag Me Please!
 </div>
 </div>
 <div class="box">2</div>
 <script>
 </script>
</body>
</html>

The preceding HTML creates styles for an element that will be used for dropping,
and sets a width, height, and border. It creates another class called red and adds a
red background to the active element so that it shows as active, along with two div
elements that will have classes of the box element for dropoff. Finally, we create a
div nested in one of the boxes that has an id of dragme and an attribute of draggable
set to true, with some instructive text added to aid the user. Complete the script by
taking the following steps:

1. Select the draggable element as an object in your JavaScript code.
2. Add an event listener of dragstart, where it updates the draggable element

to 0.5 opacity.
3. Add another event listener of dragend that removes the value for the opacity.
4. Using querySelectorAll(), select all the dropoff boxes.
5. Add event listeners to all the dropoff boxes, setting things such that the red

class is added to an element whenever the user triggers the dragenter event.
This will indicate to the user that the action is taking place.

6. Set dragover, adding a preventDefault() method to the element to disable
any actions that might already exist.

Chapter 11

[289]

7. On dragleave, remove the red class.
8. Adding the event listener of drop to the box, append the draggable element

to the event target.
9. To work across all elements in the same way, remove the default action

of the element. You can use the preventDefault() method to this event to
disable any actions that might already exist.

10. You can add console log messages to any of these events to better track them.

Form submission
When a form gets submitted, an event can be triggered. This can be achieved in
different ways, and one of them is to add to the form element the onsubmit attribute.

<form onsubmit="doSomething()">

The function that is listed there will get triggered whenever input of type submit is
submitted.

<input type="submit" value="send">

We can do more with the HTML of the form element; for example, we can redirect to
another page. We have to specify the way we want to send the form values using the
method attribute and the location page using the action attribute.

<form action="anotherpage.html" method="get" onsubmit="doStuff()">

Don't worry about the get for now; this just means that values get sent via the URL.
URLs look like this when you use get:

www.example.com/anotherpage.html?name=edward

After the question mark, the variables that are sent along are shown in key-value
pairs. This is the form that created the URL when edward was inserted for name.

<!doctype html>
<html>
 <body>
 <form action="anotherpage.html" method="get">
 <input type="text" placeholder="name" name="name" />
 <input type="submit" value="send" />
 </form>
 </body>
</html>

Interactive Content and Event Listeners

[290]

anotherpage.html can use the variables from the URL. This can be done in the
JavaScript of anotherpage.html doing something like this:

<!doctype html>
<html>
 <body>
 <script>
 let q = window.location.search;
 let params = new URLSearchParams(q);
 let name = params.get("name");
 console.log(name);
 </script>
 </body>
</html>

So far we have been submitting forms using the action and onsubmit attributes.
action redirects to another location. This could be the API endpoint of a different
page. onsubmit specifies an event that is fired when the form gets submitted.

There are more cool things we can do with the onsubmit event of forms. Remember
the use of return for onkeypress? We can do something similar here! If we make the
called function return a Boolean, the form will only get submitted when the Boolean
is true.

This comes in very handy if we want to do some form validation before sending it.
Have a look at this code and see if you can figure out when it can be submitted.

<!doctype html>
<html>
 <body>
 <div id="wrapper"></div>
 <form action="anotherpage.html" method="get" onsubmit="return
valForm()">
 <input type="text" id="firstName" name="firstName"
placeholder="First name" />
 <input type="text" id="lastName" name="lastName"
placeholder="Last name" />
 <input type="text" id="age" name="age" placeholder="Age" />
 <input type="submit" value="submit" />
 </form>
 <script>
 function valForm() {
 var p = event.target.children;

Chapter 11

[291]

 if (p.firstName.value == "") {
 message("Need a first name!!");
 return false;
 }
 if (p.lastName.value == "") {
 message("Need a last name!!");
 return false;
 }
 if (p.age.value == "") {
 message("Need an age!!");
 return false;
 }
 return true;
 }

 function message(m) {
 document.getElementById("wrapper").innerHTML = m;
 }
 </script>
 </body>
</html>

This form contains three input fields and one input button. The fields are for last
name, first name, and age. When one of them is missing, the form will not submit,
because the function will return false. A message will also be added to the div
above the form, explaining what went wrong.

Practice exercise 11.10
This will be about creating a form validator. In this exercise, you will be checking to
ensure that the desired values are entered into the input fields. The code will check
the input values that are entered by the user to match predetermined conditions for
those field values.

1. Set up a form, adding three input fields inside: First, Last, and Age. Add a
submit button.

2. Within the JavaScript code, select the form as an element object.
3. Add an submit event listener to the form.
4. Set up the default value for error as false.
5. Create a function named checker(), which will check to see the length of a

string and output the string length to the console.

Interactive Content and Event Listeners

[292]

6. Add conditions to each of the field values, first checking if the value is there
and then returning an error if the response is false, before changing the error
variable to true.

7. Use console.log() to log the details about the error.
8. For the age input value, check the value to see if the age provided is 19 or

over, otherwise cause an error.
9. At the end of the validation, check if error is true; if it is, use

preventDefault() to stop the form submission. Log the errors to the console.

Animating elements
Lastly, we want to show you that you can animate using HTML, CSS, and JavaScript.
This allows us to do even cooler things with our web page. For example, we can
trigger an animation as an event. This can be used for many different purposes, for
example, to illustrate an explanation, to draw the user's eyes to a certain location, or
to play a game.

Let's show you a very basic example. We can use the position key and set it to
absolute in CSS. This makes the position of the element relative to its nearest
positioned parent. Here, that would be the body. This is the code for a purple square
that moves from left to right when a button is clicked.

<!doctype html>
<html>
 <style>
 div {
 background-color: purple;
 width: 100px;
 height: 100px;
 position: absolute;
 }
 </style>
 <body>
 <button onclick="toTheRight()">Go right</button>
 <div id="block"></div>

 <script>
 function toTheRight() {
 let b = document.getElementById("block");
 let x = 0;
 setInterval(function () {

Chapter 11

[293]

 if (x === 600) {
 clearInterval();
 } else {
 x++;
 b.style.left = x + "px";
 }
 }, 2);

 }
 </script>
 </body>
</html>

We need to give the div block an absolute position, because we rely on the CSS left
property to make it move. In order to be to the left of something, that something
needs to be absolute, else the left property cannot be positioned relative to it. In this
case, we need to be a certain number of pixels to the left of the div; this is why we
need the position of the div to be absolute, so the position of the moving box can be
relative to that of its parent.

When we click the button, the function toTheRight() gets triggered. This function
grabs block and stores it in b. It sets x to 0. Then we use a very powerful built-in
JavaScript function: setInterval(). This function keeps on evaluating an expression
until clearInterval() gets called. This is done when x, the measure of how far we
are to the left, reaches 600. It repeats it every 2 milliseconds, which gives it the sliding
look.

You can at the same time also set different positions, like style.top, style.bottom,
and style.right, or append new elements to create a snow effect, or show constantly
driving cars. With this in your toolbox, the sky is the limit.

Practice exercise 11.11
Here we will click the purple square and watch it move on the page. This exercise
will demonstrate creating the events for a simple interactive element on the page.
The purple square will move every time it's clicked; once it reaches the boundaries
of the page, it will change direction from left to right and right to left, depending on
what side it hits.

1. Set up styling for an element, setting height and width before setting
position to absolute.

2. Create an element that you want to move on the page.

Interactive Content and Event Listeners

[294]

3. Select and store the element using JavaScript.
4. Set up an object with values for speed, direction, and position.
5. Add an event listener for if the element is clicked on.
6. Set a default value of 30 for the value of the interval counter.
7. If the counter is less than 1, then end the interval and clear it.
8. Once the interval has run 30 times using the value of x, the element will

stand still and wait to be clicked again.
9. While in motion, check if the position value is greater than 800 or less than 0,

which means it needs to change direction. The direction value will provide
the direction of movement. If the movement takes the box outside the
boundaries of the container, we need to send it in the other direction. This
can be done by multiplying by negative one. If the value is positive, it will
become negative, sending the element to the left. If the value is negative, it
will become positive, sending the element to the right.

10. Update the style.left position value of the element, assigning the value of
the position that was updated. Add px, as the assigned value of the style is a
string.

11. Output the result to the console.

Chapter projects

Build your own analytics
Figure out which elements are clicked on in a page and record their IDs, tags, and
class name.

1. Create a main container element within your HTML.
2. Add four elements inside the main element, each having a class of box and a

unique ID with unique text content.
3. Set up your JavaScript code to contain an array that you can use for tracking,

adding details from each click into it.
4. Select the main container element as a variable object in your code.
5. Add an event listener to capture clicks on the element.
6. Create a function to handle the clicks. Get the target element from the event

object.

Chapter 11

[295]

7. Check if the element has an ID, so that you don't track clicks on the main
container.

8. Set up an object to track the values; include the element textContent, id,
tagName, and className.

9. Add the temporary object to your tracking array.
10. Output the values captured in your tracking array to your console.

Star rating system
Create a star rating component that is fully interactive and dynamic using JavaScript.

Figure 11.6: Creating a star rating system

You can use the following HTML and CSS as a starting template. Provide the
completed script element as your answer.

<!DOCTYPE html>
<html>
<head>
 <title>Star Rater</title>
 <style>
 .stars ul {
 list-style-type: none;
 padding: 0;
 }
 .star {
 font-size: 2em;
 color: #ddd;
 display: inline-block;
 }
 .orange {
 color: orange;
 }
 .output {
 background-color: #ddd;
 }

Interactive Content and Event Listeners

[296]

 </style>
</head>
<body>
 <ul class="stars">
 <li class="star">✭
 <li class="star">✭
 <li class="star">✭
 <li class="star">✭
 <li class="star">✭

 <div class="output"></div>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Select all the stars within the ul that have a class of stars into an object, and
create another object for the output element.

2. Create another object to contain the results of calling querySelectorAll() on
elements with a class of star.

3. Loop through the resulting node list, adding to the element object the value
of the index plus 1, and adding an event listener listening for a click. Attach a
function called starRate() to the click event of each star element.

4. Within the starRate() function, add to the output the value of the star using
the event target and the element object's star value, which was set in the
previous step.

5. Loop through all the stars using forEach() to check if the index value of
the star element is less than the star value; if it is, apply a class of orange.
Otherwise, remove the class of orange from the classList element.

Mouse position tracker
Track your mouse's x and y position within an element. As you move the mouse
within the element, the x position and y position values will update.

1. Create a page element and add sizing to it, including height and width.
Create a class style named active that has a background-color property of
red. Finally, create an output element that will contain your text.

Chapter 11

[297]

2. Select the main container element and add event listeners to it. Listen for
mouseover, mouseout, and mousemove.

3. On mouseover, add the active class, and on mouseout, remove the active
class.

4. On mousemove, call a function that tracks the event element clientX and
clientY positions, embeds them in a human-readable sentence, and outputs
it into the output element.

Box clicker speed test game
The objective here is to click on the red box as quickly as possible once it appears.
The box will be randomly placed within a container and positioned with random
values. The box will have an event listener that will track the start and click times to
calculate the duration of the click events. You can use the following template, as the
HTML gets a little complex here—just add the <script> element to make the HTML
interactive!

<!DOCTYPE html>
<html>

<head>
 <title>Click Me Game</title>
 <style>
 .output {
 width: 500px;
 height: 500px;
 border: 1px solid black;
 margin: auto;
 text-align: center;
 }

 .box {
 width: 50px;
 height: 50px;
 position: relative;
 top: 50px;
 left: 20%;
 background-color: red;
 }

 .message {
 text-align: center;

Interactive Content and Event Listeners

[298]

 padding: 10px;
 font-size: 1.3em;
 }
 </style>
</head>

<body>
 <div class="output"></div>
 <div class="message"></div>
 <script>

 </script>
</body>
</html>

Work with the above HTML code using JavaScript.

1. There are two div elements, one with a class of output for the gameplay area
and another with a class of message to provide instructions to the player.
Select those main elements as objects using JavaScript.

2. Using JavaScript, create another element within the output element, and
create a div that will be the main clickable object. Attach a style called box to
the new element and append it to the output element.

3. Using JavaScript, add to the message area instructions for the user: Press
to Start. They will need to click the newly created div with a class of box to
start the game.

4. Create a global object called game to track the timer and the start time values.
This is to be used to calculate the duration in seconds between when the
element is shown and when the player clicks it. Set start to null.

5. Create a function that will generate a random number and return a random
value, with the argument being the maximum value you want to use.

6. Add an event listener to the box element. Once clicked, this should start the
gameplay. Set the display of the box element to none. Using the setTimeout()
method, invoke a function called addBox() and set the timeout to a random
millisecond value. You can adjust as needed; this will be the time between
the click object box being shown and it disappearing. If the start value is
null, then add text content to the message area of loading.

7. If start has a value, then get the Unix time value using getTime() of the
current date object, subtract the game start time from the current time value
in milliseconds, and then divide by 1,000 to get the value in seconds. Output
the result to the message element for the player to see their score.

Chapter 11

[299]

8. Create a function to handle the clicks, adding the box once the timer is up.
Update the message text content to say Click it…. Set the game start value
to the current time in milliseconds. Apply the style of block to the element so
it shows on the page.

9. From the available space (500 total container width minus the 50 box
width) set a random position above and to the left of the element using the
Math.random().

10. Play the game and update the styling as needed.

Self-check quiz
1. Where can you find window.innerHeight and window.innerWidth?
2. What does preventDefault() do?

Summary
In this chapter, we have dealt with quite a few topics to increase the interactivity
of web pages. We saw the different ways to specify events and then we dived into
some different event handlers in more detail. The onload event handler gets fired
when the element it was specified on, often the document object, is fully loaded.
This is great to wrap other functionality in, because it avoids selecting DOM
content that is not there yet.

We also saw the mouse event handlers, for responding to all the different things that
can be done with a mouse on a web page. The use of all these event handlers is very
similar, but they each enable a different type of interaction with the user. We also
saw that we can access the element that fired an event by calling event.target. This
property holds the element that fired an event.

We also dived into onchange, onblur, and the key event handlers in more detail.
After that, we saw how to trigger interaction when forms are submitted. We looked
at the HTML action attribute, which redirects the handling of submission, and the
onsubmit event, which deals with form submission. We then saw some things that
we can do with all these events, such as specifying a drag and drop on a page and
animating elements.

In the next chapter, we will move on to some more advanced topics that will take
your existing JavaScript skills to the next level!

[301]

12
Intermediate JavaScript

The concepts and solution approaches presented up to this point in the book are not
the only way to think about solving issues. In this chapter, we will challenge you to
look a little deeper, be curious, and practice the good habit of optimizing solutions.

In previous chapters, you were promised great things about this chapter because
the optimal use of some built-in methods require knowledge of regular expressions,
which we will cover in this chapter. There is a lot more fun to be had though—here is
a list of topics that we'll cover:

• Regular expressions
• Functions and the arguments object
• JavaScript hoisting
• Strict mode
• Debugging
• Using cookies
• Local storage
• JSON

As you can see, a selection of diverse topics, but all advanced and fun. The sections
in this chapter are not as related to each other as you might have gotten used to
by now. They are mostly individual topics that can help to really enhance your
understanding and improve your JavaScript knowledge a lot.

Intermediate JavaScript

[302]

Regular expressions
Regular expressions, also known as regex, are simply ways to describe text patterns.
You can consider them next-level strings. There are different regex implementations.
This means that depending on the interpreter, regex might differ a bit in the way
they're written. However, they are somewhat standardized, so you write them
(almost) the same for all versions of regex. We are going to use regex for JavaScript.

Regex can be very useful in many situations, for example when you need to look for
errors in a large file or retrieve the browser agent a user is using. They can also be
used for form validation, as with regex you can specify valid patterns for field entries
such as email addresses or phone numbers.

Regex is not only useful for finding strings, but can also be used for replacing
strings. By now you might think, so regex is amazing, but is there a catch? And yes,
unfortunately, there is a catch. At first, regex might kind of look like your neighbor's
cat walked over your keyboard and just typed some random characters by accident.
This regex checks for a valid email, for example:

/([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9._-]+)/g

Fear not, after this section, you will be able to decipher the secret patterns within the
regex. We are not going to go through everything there is to say about regex, but we
will establish a solid level of familiarity that will allow you to work with them and
expand your knowledge as you go.

Let's start off easy. The regex pattern is specified between two slashes. This is a valid
regex expression:

/JavaScript/

The above expression will match if a given string contains the word JavaScript.
When it matches, this means the result is positive. And this can be used to do many
things.

We can use the JavaScript built-in match() function for this. This function returns the
regex match on the result (if there is one) in the form of the substring that matched
the starting position of this string and the input string.

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 12

[303]

There are actually other built-in functions that use regex, but we will see them later.
match() is just a convenient function to demonstrate how regex works. You can see it
in action here:

let text = "I love JavaScript!";
console.log(text.match(/javascript/));

This logs null because it is case-sensitive by default and therefore is not a match. If we
had looked for /ava/ or simply /a/, it would have matched because it contains ava and
a. If you want it to be case-insensitive, you can specify this using an i after the slash. In
this case-insensitive example, the expression will match the previous string:

console.log(text.match(/javascript/i));

This will actually log the result, because it is now case-insensitive, and from that
point of view, our string does contain javascript. Here is the result:

[
 'JavaScript',
 index: 7,
 input: 'I love JavaScript!',
 groups: undefined
]

The result is an object, containing the found match and the index it started on, as
well as the input that was looked through. The groups are undefined. You can create
groups with round parentheses, as you'll see when we get to the section on groups.

You can often find regex in JavaScript in combination with the built-in search and
replace method on strings, which we'll cover next.

Specifying multiple options for words
In order to specify a certain range of options, we can use this syntax:

let text = "I love JavaScript!";
console.log(text.match(/javascript|nodejs|react/i));

Here, the expression matches either javascript, nodejs, or react. At this point, we
are only matching for the first encounter and then we quit. So this is not going to find
two or more matches right now—it will output the same thing as before:

let text = "I love React and JavaScript!";
console.log(text.match(/javascript|nodejs|react/i));

Intermediate JavaScript

[304]

It logs this:

[
 'React',
 index: 7,
 input: 'I love React and JavaScript!',
 groups: undefined
]

If we wanted to find all matches, we could specify the global modifier, g. It is very
similar to what we did for case-insensitive searches. In this example, we are checking
for all matches, and it is case-insensitive. All the modifiers are behind the last slash.
You can use multiple modifiers at the same time as we do below, or you could decide
to only use g:

let text = "I love React and JavaScript!";
console.log(text.match(/javascript|nodejs|react/gi));

This returns both React and JavaScript as a result:

['React', 'JavaScript']

As you can see, the result looks very different now. As soon as you specify g, the
match function will just return an array of the matching words. This is not too
exciting in this case, since these are the words we asked for. But it can be more of a
surprise with a more complex pattern. This is exactly what we'll learn next.

Character options
So far, our expressions are quite readable, right? The character options are where
things start to look, well, intense. Say we want to search for a string of only one
character equal to a, b, or c. We would write it like this:

let text = "d";
console.log(text.match(/[abc]/));

This will return null because d is not a, b, or c. We can include d like this:

console.log(text.match(/[abcd]/));

This will log:

['d', index: 0, input: 'd', groups: undefined]

Chapter 12

[305]

Since this is a range of characters, we can write it shorter, like this:

let text = "d";
console.log(text.match(/[a-d]/));

And if we wanted any letter, lowercase or uppercase, we would write this:

let text = "t";
console.log(text.match(/[a-zA-Z]/));

We could actually also use the case-insensitive modifier to achieve the same thing,
but this would apply to the regex pattern as a whole, and you might only need it to
apply for the specific character:

console.log(text.match(/[a-z]/i));

We would get a match on both of the preceding options. If we wanted to include
numbers as well, we would write:

console.log(text.match(/[a-zA-Z0-9]/));

As you can see, we can just concatenate ranges to specify one character, much
like we could concatenate possible options for that specific character, like [abc].
The example above specifies three possible ranges. It will match any lowercase or
uppercase letter from a to z and all numeric characters as well.

It doesn't mean that it can only match a one-character string by the way; it will just
match the first matching character in this case because we didn't add the global
modifier. However, these special characters won't match:

let text = "äé!";
console.log(text.match(/[a-zA-Z0-9]/));

To address the difficulty of complex characters not matching an expression, the dot
functions as a special wildcard character in regex that can match any character. So
what do you think this does?

let text = "Just some text.";
console.log(text.match(/./g));

Since it has the global modifier, it is going to match any character. This is the result:

[
 'J', 'u', 's', 't',
 ' ', 's', 'o', 'm',

Intermediate JavaScript

[306]

 'e', ' ', 't', 'e',
 'x', 't', '.'
]

But what if you only wanted to find a match for the dot character itself? If you want
a special character (one that is used in regex to specify a pattern) to have a normal
meaning, or a normal character to have a special meaning, you can escape it using
the backslash:

let text = "Just some text.";
console.log(text.match(/\./g));

In this example, we escape the dot by adding a preceding backslash. Therefore, it
doesn't function as a wildcard and it is going to look for a literal match. This is what
it will return:

['.']

There are some normal characters that get a special meaning by adding a backslash
before them. We are not going to cover them in depth, but let's have a look at some
examples:

let text = "I'm 29 years old.";
console.log(text.match(/\d/g));

If we escape the d, \d, it matches any digit. We are doing a global search so it will
specify any digit. This is the result:

['2', '9']

We can also escape the s, \s, which matches all whitespace characters:

let text = "Coding is a lot of fun!";
console.log(text.match(/\s/g));

The above example will just return a few spaces, but tabs and other types of
whitespace are also included:

[' ', ' ', ' ', ' ', ' ']

A very useful one is \b, which matches text only when it's at the beginning of a word.
So, in the following example, it is not going to match the instances of in in beginning:

let text = "In the end or at the beginning?";
console.log(text.match(/\bin/gi));

Chapter 12

[307]

This is what it will end up logging:

['In']

Even though you can check for characters being numbers, the match() method
belongs to the string object, so you implement it on numeric variables. For example,
try the following:

let nr = 357;
console.log(nr.match(/3/g));

You should receive a TypeError saying that nr.match() is not a function.

Groups
There are many reasons to group your regex. Whenever you want to match a group
of characters, you can surround them with parentheses. Have a look at this example:

let text = "I love JavaScript!";
console.log(text.match(/(love|dislike)\s(javascript|spiders)/gi));

Here it is going to look for either love or dislike, followed by a whitespace
character, followed by javascript or spiders, and it will do so for all occurrences
while ignoring whether they are in uppercase or lowercase. This is what it will log:

['love JavaScript']

Let's just say we can match on roughly four combinations here. Two of them seem to
make more sense to me personally:

• Love spiders
• Dislike spiders
• Love JavaScript
• Dislike JavaScript

Groups are very powerful when we know how to repeat them. Let's see how to
do that. Very often, you'll find yourself in need of repeating a certain regex piece.
We have several options for this. For example, if we want to match any four
alphanumeric characters in a sequence, we could just write this:

let text = "I love JavaScript!";
console.log(text.match(/[a-zA-Z0-9][a-zA-Z0-9][a-zA-Z0-9][a-zA-Z0-
9]/g));

Intermediate JavaScript

[308]

This will produce the following as output:

['love', 'Java', 'Scri']

This is a terrible way to go about repeating a block: let's look for better options. If we
only want it to be present 0 or 1 times, we can use the question mark. So this is for
optional characters, for example:

let text = "You are doing great!";
console.log(text.match(/n?g/gi));

This looks for a g character that may or not may be preceded by an n. Therefore, this
will log:

['ng', 'g']

Arguably, one time is not really an example of repeating. Let's look at getting more
repetitions. If you want something at least once, but optionally more often, you can
use the plus sign: +. Here is an example:

let text = "123123123";
console.log(text.match(/(123)+/));

This is going to match for the group 123 one or more times. And since this string is
present, it will find a match. This is what will be logged:

['123123123', '123', index: 0, input: '123123123', groups: undefined]

It matches the whole string in this case, since it is just 123 repeated. There are also
situations where you want to have a certain piece of regex match any number of
times, which can be indicated with the asterisk: *. Here is an example regex pattern:

/(123)*a/

It will match with any a preceded by 123 any number of times. So it will match on
the following, for example:

• 123123123a
• 123a
• a
• ba

Chapter 12

[309]

The last thing to note about repeating is that we can be more specific as well. We do
this using this syntax {min, max}. Here is an example:

let text = "abcabcabc";
console.log(text.match(/(abc){1,2}/));

This will log:

['abcabc', 'abc', index: 0, input: 'abcabcabc', groups: undefined]

It does this because it will match on abc both once and twice. As you can see, we
have been using groups, but groups is still undefined in the output. In order to
specify groups, we'll have to name them. Here's an example of how to do it:

let text = "I love JavaScript!";
console.log(text.match(/(?<language>javascript)/i));

This will output:

[
 'JavaScript',
 'JavaScript',
 index: 7,
 input: 'I love JavaScript!',
 groups: [Object: null prototype] { language: 'JavaScript' }
]

There is more to say about regex, but this should already enable you to do quite a lot
of cool things with it. Let's have a look at some practical examples.

Practical regex
Regex can be of great use in many situations—anywhere you need to match certain
string patterns, regex will come in handy. We are going to discuss how you can use
regex in combination with other string methods, and how you can use it to validate
email addresses and IPv4 addresses.

Intermediate JavaScript

[310]

Searching and replacing strings
In Chapter 8, Built-In JavaScript Methods, we saw the search and replace methods
on strings. We would have liked our search to be case-insensitive, though. Guess
what—we can use regex for this!

let text = "That's not the case.";
console.log(text.search(/Case/i));

Adding the i modifier here ignores the distinction between uppercase and
lowercase. This code returns 15, which is the starting index position of the match.
This cannot be done using the normal string input.

How do you think we can alter the behavior of the replace method using regex in
such a way that we can replace all instances rather than the first instance of a string?
Again, with a modifier! We use the global modifier (g) for this. To get a feel for the
difference, look at this expression without g:

let text = "Coding is fun. Coding opens up a lot of opportunities.";
console.log(text.replace("Coding", "JavaScript"));

This is what it outputs:

JavaScript is fun. Coding opens up a lot of opportunities.

Without regex, it only replaces the first encounter. This time, let's see it with the g
global modifier:

let text = "Coding is fun. Coding opens up a lot of opportunities.";
console.log(text.replace(/Coding/g, "JavaScript"));

The result is as follows:

JavaScript is fun. JavaScript opens up a lot of opportunities.

As you can see, all occurrences are replaced.

Practice exercise 12.1
Find and replace strings. The following exercise involves replacing characters in a
specified string value. The first input field will indicate which character string will be
replaced, and the second input field will indicate which characters will replace them
once the button is clicked.

Chapter 12

[311]

Use the HTML below as a template, and add the JavaScript needed to complete the
task:

<!doctype html>
<html>

<head>
 <title>Complete JavaScript Course</title>
</head>

<body>
 <div id="output">Complete JavaScript Course</div>
 Search for:
 <input id="sText" type="text">

 Replace with:
 <input id="rText" type="text">

 <button>Replace</button>
 <script>

 </script>
</body>

</html>

Take the following steps:

1. Select each of the three page elements using JavaScript and assign the
element objects as variables so that they can be easily referenced in your
code.

2. Add an event listener to the button to invoke a function when clicked.
3. Create a function named lookup() that will find and replace the text in the

output element. Assign the output element's text content to a variable named
s, and then assign the value of the input we are replacing to another variable
named rt.

4. Create a new regex with the value of the first input field, which will allow
you to replace the text. Using the regex, check for a match with the match()
method. Wrap this with a condition that will execute a block of code if
matches are found.

5. If the match is found, use replace() to set the new value.
6. Update the output area with the newly created and updated text output.

Intermediate JavaScript

[312]

Email validation
In order to create a regex pattern, we need to be able to describe the pattern with
words first. Email addresses consist of five parts, in the form of [name]@[domain].
[extension].

Here are the five parts explained:

1. name: One or more alphanumerical characters, underscores, dashes, or dots
2. @: Literal character
3. domain: One or more alphanumerical characters, underscores, dashes, or dots
4. .: Literal dot
5. extension: One or more alphanumerical characters, underscores, dashes, or

dots

So, let's do the steps for regex:

1. [a-zA-Z0-9._-]+

2. @

3. [a-zA-Z0-9._-]+

4. \. (remember, the dot is a special character in regex, so we need to escape it)
5. [a-zA-Z0-9._-]+

Putting it all together:

/([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9._-]+)/g

Let's look at this regex in action:

let emailPattern = /([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9._-
]+)/g;
let validEmail = "maaike_1234@email.com";
let invalidEmail = "maaike@mail@.com";
console.log(validEmail.match(emailPattern));
console.log(invalidEmail.match(emailPattern));

We tested the pattern on both a valid and an invalid email address, and this is the
output:

['maaike_1234@email.com']
null

Chapter 12

[313]

As you can see, it returns a result for the valid email and it returns null (no match)
for the invalid email.

Practice exercise 12.2
Create an application that uses JavaScript to check whether the string value of an
input is a validly formatted email using regex. Look at the following template:

<!doctype html>
<html>
<head>
 <title>JavaScript Course</title>
</head>
<body>
 <div class="output"></div>
 <input type="text" placeholder="Enter Email">
 <button>Check</button>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Use the above template code to start creating your application. Within the
JavaScript code, select the input, output, and button elements from the page
as JavaScript objects.

2. Add an event listener to the button to run a block of code when clicked that
will get the current value in the input field. Create a blank response value
that will populate the output div element contents.

3. Add a test with the string value from the input field and the expression for
email format. If the test result is false, update the response output to say
Invalid Email and change the output color to red.

4. If the condition of the test returns true, add a response that confirms the
email format is correct and change the text color of output to green.

5. Output the response value into the output element.

Intermediate JavaScript

[314]

Functions and the arguments object
JavaScript deals with arguments in functions by adding them to a custom object
called arguments. This object works a lot like an array, and we can use it instead of
using the name of the parameter. Consider the following code:

function test(a, b, c) {
 console.log("first:", a, arguments[0]);
 console.log("second:", b, arguments[1]);
 console.log("third:", c, arguments[2]);
}

test("fun", "js", "secrets");

This outputs:

first: fun fun
second: js js
third: secrets secrets

When you update one of the parameters, the argument gets changed accordingly.
The same goes for the other way around;

function test(a, b, c) {
 a = "nice";
 arguments[1] = "JavaScript";
 console.log("first:", a, arguments[0]);
 console.log("second:", b, arguments[1]);
 console.log("third:", c, arguments[2]);
}

test("fun", "js", "secrets");

This is going to change both arguments[0] and b, as they are related to a and
arguments[1], respectively, as you can see in the output:

first: nice nice
second: JavaScript JavaScript
third: secrets secrets

If the function is called with more arguments than were declared in the function
signature, this is the way to access them. However, the modern way is to use the rest
parameter (…param) instead of the arguments object.

Chapter 12

[315]

Practice exercise 12.3
This exercise will demonstrate using the array-like arguments object and extracting
values from it. Using the arguments length property, we will iterate through the
items in the arguments and return the last item in the list:

1. Create a function without any parameters. Create a loop to iterate through
the length of the arguments object. This will allow an iteration of each item of
the arguments in the function.

2. Set up a variable called lastOne with a blank value.
3. As you loop through the arguments, set lastOne to the current value of the

argument using the index of i to return the argument value. The argument
will have an index value that can be used to reference the value as you iterate
through the arguments object.

4. Return the value of lastOne, which should only return the last argument
value as the response.

5. Output the response from the function, pass a number of arguments into the
function, and console log the response result. You should see only the last
item in the list. If you want to see each one, you can output them separately
to the console as you look through the values, or construct an array that can
then be returned, adding each one as you go through the arguments.

JavaScript hoisting
In Chapter 6, Functions, we discussed that we have three different variables, const,
let, and var, and we highly recommended that you should use let instead of var
because of their different scopes. JavaScript hoisting is why. Hoisting is the principle
of moving declarations of variables to the top of the scope in which they are defined.
This allows you to do things that you cannot do in many other languages, and for
good reason by the way. This should look normal:

var x;
x = 5;
console.log(x);

In case you've forgotten what the rest parameter is, you can revisit
the rest parameter in Chapter 6, Functions.

Intermediate JavaScript

[316]

It just logs 5. But thanks to hoisting, so does this:

x = 5;
console.log(x);
var x;

If you try to do this with let, you'll get a ReferenceError. This is why it is better to
use let. Because clearly, this behavior is very hard to read, unpredictable, and you
don't really need it.

The reason this happens is that the JavaScript interpreter moves all the var
declarations to the top of the file before processing the file. Only the declarations, not
the initializations. This is why you get a result of undefined if you use it before having
initialized it. And this is why it should be initialized before it has been declared. It
was designed this way for memory allocation, but the side effects are undesirable.

However, there is a way to turn this behavior off. Let's see how we can do so in the
next section!

Using strict mode
We can change the understanding and forgiving behavior of JavaScript to some
extent using strict mode. You can switch on strict mode with the following command
in your code. This needs to be the first command of your code:

"use strict";

Here is something that works when we don't use strict mode:

function sayHi() {
 greeting = "Hello!";
 console.log(greeting);
}

sayHi();

We forgot to declare greeting, so JavaScript did it for us by adding a greeting
variable to the top level and it will log Hello!. If we enable strict mode, however,
this will give an error:

"use strict";

function sayHi() {

Chapter 12

[317]

 greeting = "Hello!";
 console.log(greeting);
}

sayHi();

The error:

ReferenceError: greeting is not defined

You can also use strict mode only in a particular function: simply add it to the top of
the function and it gets enabled for that function only. Strict mode alters a few other
things too; for example, when using strict mode, there are fewer words that can be
used as names for your variables and functions because they are likely to become
reserved keywords in the future that JavaScript will need for its own language.

Using strict mode is a great way of getting used to using JavaScript in the setting of
frameworks or even for writing TypeScript later. It is typically considered a good
practice nowadays, so we would encourage you to use this in your own code when
you have the chance. This is often not an (easy) option when working with existing
older code though.

Now we have seen strict mode, it's time to dive into a whole different mode:
debug mode! Debug mode is for when you are not busy writing or running your
application, but are running it in a special way to spot the locations of any errors.

Debugging
Debugging is a delicate art. In the beginning, it usually is very hard to spot what's
wrong with your code. If you are using JavaScript in the browser and it is not
behaving as you would expect, step 1 is always to open the console in the browser.
Often it will contain errors that can help you further.

If that doesn't solve it, you can log to the console in every step of your code, and also
log the variables. This will give you some insight as to what is going on. It might
just be that you are relying on a certain variable that happens to be undefined. Or
perhaps you are expecting a certain value from a mathematical computation, but
you've made an error and the result is something completely different from what
you thought. Using console.log() during development to see what's happening is
rather common.

Intermediate JavaScript

[318]

Breakpoints
A more professional way to go about debugging is to use breakpoints. This can be
done from most browsers and IDEs. You click on the line before your code (in the
Sources panel in Chrome, but this may be different for different browsers), and a dot
or arrow will appear. When your application is running, it will pause at this point
to give you the opportunity to inspect the values of variables and walk through the
code line by line from there.

This way, you will get a good clue of what is going on and how to fix it. Here is how
to use breakpoints in Chrome, and most other browsers have something like this. In
Chrome, go to the Sources tab of the Inspect panel. Select the file you want to set a
breakpoint in. Then you just click on the line number and it sets the breakpoint:

Figure 12.1: Breakpoints in the browser

Chapter 12

[319]

Then try to trigger the line of code, and when it gets triggered, it pauses. On the very
right of the screen I can inspect all the variables and values:

Figure 12.2: Inspecting breakpoint variables

Intermediate JavaScript

[320]

You can now go through your code with a fine-toothed comb: with the play icon on
top, you can resume script execution (until it hits the next breakpoint or runs in to
the same breakpoint again). With the round arrow icon at the top, I can go to the next
line and inspect the values on the next line again.

Practice exercise 12.4
Variable values can be tracked in the editor while debugging. The following exercise
will demonstrate how to use the editor's breakpoints to check a value of a variable
at a certain point in the running of the script. This is a simple example, but the same
process can be used to find out information about larger scripts at specific points
during execution, or establish where a problem may lie.

You can use the following short script as an example:

let val = 5;
val += adder();
val += adder();
val += adder();
console.log(val);
function adder(){
 let counter = val;
 for(let i=0;i<val;i++){
 counter++;
 }
return counter ;
}

There are many options with breakpoints that we don't have space
to cover here. For more detail on how you can debug your code
with breakpoints, look in your chosen code editor's documentation
or check the relevant Google Chrome documentation here:
https://developer.chrome.com/docs/devtools/javascript/
breakpoints/.

There are minor differences and nuances in the way breakpoints
operate in different editors, so please refer to the documentation
of your environment for more of a detailed walk-through—this
is intended to give you an idea of what breakpoints offer when it
comes to debugging.

https://developer.chrome.com/docs/devtools/javascript/breakpoints/
https://developer.chrome.com/docs/devtools/javascript/breakpoints/

Chapter 12

[321]

This exercise has been tested in a desktop editor but it is equally relevant to browser
consoles and other environments. Take the following steps:

1. Open your script in your chosen editor, or the Sources tab of your browser's
Inspect panel. Click to the left of the line of code where you want to add a
breakpoint. A dot or other indicator will appear to indicate the breakpoint
is set:

Figure 12.3: Setting breakpoints

Remember to add <script> tags and open the script as an HTML
document if you're testing this in your browser console.

Intermediate JavaScript

[322]

2. Run the code with your new breakpoints: I have selected Run | Start
Debugging, but this will vary depending on your editor. You can simply
reload the web page if you're using the browser console to rerun the code
with your new breakpoints accounted for:

Figure 12.4: Running code with breakpoints added

3. You should now see the debugging console. There will be a tab that lists the
variables in the code and the current values at the first breakpoint. It's called
VARIABLES in my editor, but it's the Scope tab in the Chrome browser
console.

4. You can use the menu options to move to the next breakpoint, stop
debugging, or restart the breakpoint sequence. Press the play icon to move to
the next breakpoint. It will update to have a value of 5, as specified by line 1,
and pause at the first breakpoint. Note that the highlighted line has not been
run yet:

Chapter 12

[323]

Figure 12.5: Viewing variables in the console

5. Press the play icon once more, and the script will run until it hits the next
breakpoint, at which point the value of the variable will update as a result of
the code on line 2:

Figure 12.6: Progressing through breakpoints in a script

Intermediate JavaScript

[324]

6. Press play again to move to the next breakpoint, which increases the value of
val once more:

Figure 12.7: The final breakpoint

7. Once the last breakpoint is reached you will only see options to restart or
stop the debugger. If you press stop, it will end the debugging process:

Figure 12.8: Breakpoints in the browser

The final value of val after the third breakpoint was revealed as 135. Write down
the values of val after the first and second calls to the adder() function, which were
revealed to you by using breakpoints.

Chapter 12

[325]

Error handling
We have seen a lot of errors appear already. Until now, we let the program crash
when it encountered an error. There are other ways to deal with errors. When we are
dealing with code that depends on some sort of outside input, such as an API, user
input, or a file we will need to deal with the errors that this input can cause.

If we expect a certain piece of code to throw an error, we can surround this code with
a catch block. The error it might throw will be caught in this block.

Here is an example of a piece of code that throws an error, and is surrounded with
a try and catch block. Let's assume the somethingVeryDangerous() function might
throw errors:

try {
 somethingVeryDangerous();
} catch (e) {
 if (e instanceof TypeError) {
 // deal with TypeError exceptions
 } else if (e instanceof RangeError) {
 // deal with RangeError exceptions
 } else if (e instanceof EvalError) {
 // deal with EvalError exceptions
 } else {
 //deal with all other exceptions
 throw e; //rethrow
 }
}

This was a basic exercise, but we invite you to test out using
breakpoints on some larger scripts and get more comfortable in
your understanding of how your code works during runtime.

You have to be careful not to use this too much, and you usually
don't want to do this when you can just write better code to avoid
the error in the first place.

Intermediate JavaScript

[326]

If it throws an error, it will end up in the catch block. Since Error could mean
many different errors, we are going to check for the exact error we are dealing with
and write a specific handling of this error. We check the exact error class with the
instanceof operator. After the error handling, the rest of the code will continue to
execute normally.

You can do one more thing with a try catch block, and that is add a finally block.
This finally block gets executed irrespective ofwhether errors are thrown. This is
great for cleanup purposes. Here is a simple example:

try {
 trySomething();
} catch (e) {
 console.log("Oh oh");
} finally {
 console.log("Error or no error, I will be logged!");
}

We don't know the output of this code, since trySomething() is not defined. If it were
to throw an error, it would log Oh oh to the console and then Error or no error, I
will be logged!. If trySomething() didn't throw an error, it would only log the last
part.

Lastly, if, for whatever reason, you need to throw an error, you can do so with the
throw keyword, like this:

function somethingVeryDangerous() {
 throw RangeError();
}

This can be of great use whenever you need to deal with things out of your control,
such as an API response, user input, or input from reading a file. If unexpected
things happen, sometimes you'll have to throw an error to deal with it appropriately.

Practice exercise 12.5
1. Using throw, try, and catch, check if the value is a number, and if it's not,

then create a custom error.
2. Create a function with one argument called val.
3. Use try, and within it add a condition that checks whether val is a number

using isNaN. If true, then throw an error that states that it is not a number.
Otherwise, output Got a number to the console.

Chapter 12

[327]

4. Use catch to catch any errors and output the error values to the console.
5. Add finally to run and output the value, and when the function has

completed, also include the value of val.
6. Create one request to the function with a string argument and another with a

number. See the results in the console.

Using cookies
Cookies are small data files that are stored on your own computer and used by
websites. Cookies were invented to store things about the user of the website.
Cookies are strings with a special pattern. They contain key-value pairs, and these
key-value pairs are separated by semi-colons.

You can create a cookie and use it again later. Here is how you can create a cookie:

document.cookie = "name=Maaike;favoriteColor=black";

This does not work in all browsers when you run it on the client side (such as in your
<script> tag). In Chrome, for example, you cannot set the cookies from the client
side. You have to run the code from a server. (I have used Safari instead to do this
here, but there are no guarantees about future support.) An alternative is the web
storage API.

It is also possible to start Chrome from the command line with certain settings
enabled, or to enable the cookies in the settings under privacy preferences. Careful
to turn this off afterward if you don't want it, though. This is how you can read from
the cookie:

let cookie = decodeURIComponent(document.cookie);
let cookieList = cookie.split(";");
for (let i = 0; i < cookieList.length; i++) {
 let c = cookieList[i];
 if (c.charAt(0) == " ") {
 c = c.trim();
 }
 if (c.startsWith("name")) {
 alert(c.substring(5, c.length));
 }
}

Intermediate JavaScript

[328]

This example gets all the cookies using decodeURIComponent(), and then splits them
on the ;. This leaves us with an array, cookieList, with key-value pairs as strings.
Next, we loop over all the key-value pairs. Trim them (remove the whitespace in
front and at the back), and see whether they start with name. This was the name of
our cookie key.

If we want to get the value, we have to start reading after the key, so at least the
length of the key, which is 4 (name) in this case. This brings us to index 3 already.
We also want to skip the equal sign on index 4, so we start at index 5. In this case, we
are adding an alert to the name. Here is an example of a simple website that uses a
cookie to greet the user:

<!DOCTYPE html>
<html>
 <body>
 <input onchange="setCookie(this)" />
 <button onclick="sayHi('name')">Let's talk, cookie!</button>
 <p id="hi"></p>

 <script>
 function setCookie(e) {
 document.cookie = "name=" + e.value + ";";
 }

 function sayHi(key) {
 let name = getCookie(key);
 document.getElementById("hi").innerHTML = "Hi " + name;
 }

 function getCookie(key) {
 let cookie = decodeURIComponent(document.cookie);
 let cookieList = cookie.split(";");
 for (let i = 0; i < cookieList.length; i++) {
 let c = cookieList[i];
 if (c.charAt(0) == " ") {
 c = c.trim();
 }
 if (c.startsWith(key)) {
 console.log("hi" + c);
 return c.substring(key.length + 1, c.length);
 }
 }
 }

Chapter 12

[329]

 </script>
 </body>
</html>

If you are writing a new website, you probably should not be using this. However,
whenever you need to work with older code, chances are you'll come across this.
And now you know what it means and how to adjust it. Good for you!

Practice exercise 12.6
Let's make a cookie builder. Create several functions that will allow you to interact
with page cookies, including reading a cookie value by name, creating a new cookie
using a name and setting it for a set number of days, and deleting a cookie. You can
use the following HTML template to get you started:

<!doctype html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Set up your webpage, and in the JavaScript code, output the value of
document.cookie. It should be blank.

2. Create a function that will take the parameters for cookieName, cookieValue,
and the number of days you want to set the cookie.

3. Check if days is valid, and within the block of valid code, get the current
date. Set a setTime value for the cookie to expire in milliseconds by
multiplying the days into milliseconds.

4. Change the date object of milliseconds until the cookie expires to a UTC
string value.

5. Set document.cookie to cookieName = cookieValue, plus add the expiry
details and lastly specify path=/.

Intermediate JavaScript

[330]

6. Create a function to create a test cookie with a value and expiry set after a
number of days. Create a second cookie the same way, and when you refresh
your page, you should see at least two cookies in the console.

7. Create a second function to read a cookie value, set the value as false, and
then create an array of the cookies split by semi-colons.

8. Loop through all the cookies and split again where the equal signs are. This
will give you the first item with index 0 as the name of the cookie. Add a
condition to check if the name is equal to the name that was requested in the
function parameters. If it matches, assign the value of the second item in the
index, which will be the value of the cookie with the selected name. Return
cookievalue in the function.

9. Add two console log messages using the function to read both cookies you
have set earlier. Output the values of the cookies in the console.

10. To delete a cookie, you need to set a date prior to the current date. You can
create a cookie with a -1 date and send the cookie with its selected name to
be deleted by invoking the cookie creation function.

11. Try deleting a cookie by name.

Local storage
We have looked at cookies as a way to save user data, but there is actually a more
modern way to do this: local storage. Local storage is an amazing fun topic that
will add to your ability to make smart websites. With local storage, we can save
key-value pairs in our web browser and use them again in a new session (when the
browser is opened again later). The information is typically stored in a folder on the
computer of the user, but this differs a bit by browser.

This allows the website to store some information and retrieve it later, even after
refreshing the page or closing the browser. The advantage of local storage over
cookies is that they don't need to be passed around with every HTTP request, which
is the case with cookies. Local storage just lives there and waits to be accessed.

The localStorage object is a property of the window object that we have seen before.
There are a few methods on the localStorage object that we need to know to use
it effectively. First of all, we need to be able to get and set key-value pairs on local
storage. We use setItem() whenever we want to save something and getItem()
whenever we want to retrieve the value later. Here is how to do it:

<!DOCTYPE html>
<html>
 <body>

Chapter 12

[331]

 <div id="stored"></div>
 <script>
 let message = "Hello storage!";
 localStorage.setItem("example", message);

 if (localStorage.getItem("example")) {
 document.getElementById("stored").innerHTML =
 localStorage.getItem("example");
 }
 </script>
 </body>
</html>

This code snippet outputs Hello storage! on the page. You can add items to
storage by specifying a key and a value with the setItem method. You can access
localStorage directly or via the window object. Here we specify example as the key
and Hello storage! as the value and save it to local storage. Then we check whether
the example key is set in local storage and output the data by writing it to the
innerHTML of the div with the ID stored.

If you go back to your code and turn off the setItem() line before loading the page
a second time, it still will output that value, since the information was stored when
running the script the first time and never got deleted. Local storage doesn't expire,
though it can be manually deleted.

We can also retrieve a key using the index. This is useful whenever we need to loop
through the key-value pairs and we don't know the names of the keys. This is how to
retrieve a key by index:

window.localStorage.key(0);

In this case, the key is name. In order to get the associated value, we can do this:

window.localStorage.getItem(window.localStorage.key(0));

We can also remove key-value pairs like this:

window.localStorage.removeItem("name");

And we can remove all the key-value pairs from the local storage in one call:

window.localStorage.clear();

Intermediate JavaScript

[332]

So, with local storage you can save values even after closing the browser. This allows
for a lot of "smart" behavior, since your app is now able to remember things, such as
what you've entered in a form, which settings you've toggled on a website, and what
you've looked at previously.

Please don't see this as an alternative that you can use to bypass the problems with
cookies and privacy. Local storage raises the exact same issues as cookies, it's just less
known. You will still have to mention on your website that you are tracking users
and storing information, just like you need to do for cookies.

Practice exercise 12.7
Let's create a local storage shopping list that will store values in the browser's local
storage. This is an example of using JavaScript to convert from strings to useable
JavaScript objects and back to strings that can be stored in local storage. You can use
the following template:

<!doctype html>
<html>
<head>
 <title>JavaScript</title>
 <style>
 .ready {
 background-color: #ddd;
 color: red;
 text-decoration: line-through;
 }
 </style>
</head>
<body>
 <div class="main">
 <input placeholder="New Item" value="test item" maxlength="30">
 <button>Add</button>
 </div>
 <ul class="output">

 <script>

 </script>
</body>
</html>

Chapter 12

[333]

Take the following steps:

1. In the JavaScript code, select all the page elements as JavaScript objects.
2. Create a tasks array with a value of the local tasklist storage if it exists,

otherwise set the tasks array to an empty array. Using JSON.parse, you can
convert the string value to a useable object in JavaScript.

3. Loop through all the items in the tasklist array; they will be stored as
objects, with a name and a Boolean value for their checked status. Create a
separate function to build the task item, adding it to the page from the list.

4. In the task generation function, create a new list item and a textNode.
Append textNode to the list item. Append the list item to the page output
area. If the task is marked complete with a Boolean value of true, then add
the style class of ready.

5. Add an event listener to the list item that will toggle the ready class when
clicked. Every time there is a change to any list item, you will also need to
store that to the local storage. Create a task builder function that will store
and ensure the visual list is the same as the local storage list. You will need to
clear the current task list array and rebuild from the visual data, so create a
function to handle the list building.

6. The task builder function will clear the current tasks array, and select all the
li elements on the page. Loop through all the list items, getting the text value
from the element, and checking if it contains the class of ready. If it contains
the ready class, then mark the checked condition as true. Add the results to
the tasks array, and this will rebuild the array to ensure it matches with what
the user sees visually. Send to a save tasks function to save the tasks array in
local storage, so if the page is refreshed, you will see the same list.

7. In the save tasks function, set the localstorage item to the tasks array. You
will need to stringify the object so that it can go into the string parameter of
local storage.

8. Now, when you refresh the page, you will see the list of tasks. They can be
crossed out by clicking them and new items can be added in the input field
by pressing the button to submit new items.

JSON
JSON stands for JavaScript Object Notation, which is nothing more than a data
format. We saw this notation when we were creating our objects in JavaScript;
however, JSON doesn't mean JavaScript objects, it's just a way of representing data
using a similar format as JavaScript objects. It can also be easily converted to a
JavaScript object.

Intermediate JavaScript

[334]

JSON is a standard used to communicate with APIs, including APIs that aren't
written in JavaScript! APIs can accept data, for example, the data from a form on
a website, in JSON format. And nowadays, APIs almost always send data back
in JSON. Sending data from an API happens, for example, when you enter a web
shop—the products typically come from a call to an API that is connected to a
database. This data gets converted to JSON and is sent back to the website. Here is an
example of JSON:

{
 "name" : "Malika",
 "age" : 50,
 "profession" : "programmer",
 "languages" : ["JavaScript", "C#", "Python"],
 "address" : {
 "street" : "Some street",
 "number" : 123,
 "zipcode" : "3850AA",
 "city" : "Utrecht",
 "country" : "The Netherlands"
 }
}

This is an object that seems to describe a person. It has key-value pairs. The keys
always have to be between quotes, but the values only have to be between quotes
when they are strings. So, the first key is name and the first value is Malika.

Lists of values (or JavaScript arrays) are indicated with []. The JSON object contains
a list of languages, which has the square brackets, and another object, address. You
can tell this by the curly brackets.

There are actually only a few flavours in JSON:

• Key-value pairs with values of the following types: string, number, Boolean,
and null

• Key-value pairs with lists, which have [and] that contain the items in the
list

• Key-value pairs with other objects, which have { and } that contain other
JSON elements

These three options can be combined, so an object can contain other objects and a
list can contain other lists. We saw this already in the above example. Our object
contained a nested address object.

Chapter 12

[335]

But this can be nested even further. A list can also contain objects, which can contain
lists with objects, with lists, and so on. This might sound a bit complicated and
that's exactly the point. Even though it is very simple, nesting all these options can
still complicate JSON a bit. There is a reason we've placed it in our advanced topic
chapter.

Let's now have a look at a slightly more complex example:

{
 "companies": [
 {
 "name": "JavaScript Code Dojo",
 "addresses": [
 {
 "street": "123 Main street",
 "zipcode": 12345,
 "city" : "Scott"
 },
 {
 "street": "123 Side street",
 "zipcode": 35401,
 "city" : "Tuscaloosa"
 }
]
 },
 {
 "name": "Python Code Dojo",
 "addresses": [
 {
 "street": "123 Party street",
 "zipcode": 68863,
 "city" : "Nebraska"
 },
 {
 "street": "123 Monty street",
 "zipcode": 33306,
 "city" : "Florida"
 }
]
 }
]
}

Intermediate JavaScript

[336]

This is a list of companies, with two company objects on it. The companies have two
key-value pairs: a name and an address list. Each of the address lists contains two
addresses, and each address consists of three key-value pairs: street, zipcode and
city.

Practice exercise 12.8
This exercise will demonstrate how you can create a valid JSON object that can be
used as a JavaScript object. You will create a simple list of names and statuses that
can be looped through and output the results to the console. You will load JSON data
to JavaScript and output the results of the object's contents:

1. Create a JavaScript object that contains JSON formatted data. The object
should contain at least two items and each item should be an object with at
least two paired values.

2. Create a function that can be invoked that will loop through each item in the
JavaScript JSON object and output the result to the console. Output each item
of data to the console using console.log.

3. Invoke the function and launch the JavaScript code.

Parsing JSON
There are many libraries and tools available for parsing a JSON string into an
object. A JavaScript string can be converted to a JSON object using the JSON.parse()
function. Data that is received from another place is always of value string, so in
order to treat it as an object, it needs to be converted. This is how to do it:

let str = "{\"name\": \"Maaike\", \"age\": 30}";
let obj = JSON.parse(str);
console.log(obj.name, "is", obj.age);

After parsing, it can be treated as an object. Therefore it will log Maaike is 30 to the
console.

The other way around is also necessary sometimes. Objects can be converted to a
JSON string using the JSON.stringify() method. It converts the object or value from
JavaScript to a JSON string. You can see it in action here:

let dog = {
 "name": "wiesje",
 "breed": "dachshund"
};

Chapter 12

[337]

let strdog = JSON.stringify(dog);
console.log(typeof strdog);
console.log(strdog);

The type of strdog becomes a string because it is being stringified. And it no longer
has the properties name and breed. These will be undefined. This code snippet will
log the following to the console:

string
{"name":"wiesje","breed":"dachshund"}

This can be useful for storing JSON data directly in a database, for example.

Practice exercise 12.9
This exercise will demonstrate the use of JSON methods to parse JSON and convert
string values to JSON. Using JSON methods with JavaScript, convert a JSON
formatted string value to a JavaScript object and convert a JavaScript object into a
string representation of the JSON object:

1. Create a JSON object with several items and objects. You can use the JSON
object from the previous lesson.

2. Using the JSON stringify() method, convert the JSON JavaScript object into
a string version and assign it to a variable named newStr [{"name":"Learn
JavaScript","status":true},{"name":"Try JSON","status":false}].

3. Using JSON.parse(), convert the newStr value back into an object and assign
it to a variable named newObj.

4. Iterate through the items in the newObj and output the results to the console.

Practice exercise 12.9 answers
let myList = [{
 "name": "Learn JavaScript",
 "status": true
},
{
 "name": "Try JSON",
 "status": false
}
];

Intermediate JavaScript

[338]

const newStr = JSON.stringify(myList);
const newObj = JSON.parse(newStr);
newObj.forEach((el)=>{
 console.log(el);
});

Chapter projects

Email extractor
Use the following HTML as a starter template and add the JavaScript code to make
an email extractor function:

<!doctype html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>
 <textarea name="txtarea" rows=2 cols=50></textarea> <button>Get
Emails</button>
 <textarea name="txtarea2" rows=2 cols=50></textarea>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. In JavaScript, select both text areas and the button and set them as JavaScript
objects.

2. Add an event listener to the button that will invoke a function that gets the
content of the first textarea and filters it to only accept email addresses.

3. Within the extracting function, get the content of the first input field. Using
match(), return an array of the email addresses that were matched from
within the content from the first textarea.

4. To remove any duplicates, create a separate array that will hold only unique
values.

Chapter 12

[339]

5. Loop through all the email addresses found and check whether each one is
already in the holder array, and if not, add it.

6. Using the join() array method, you can now join together the results of
the email addresses found within the content and output it into the second
textarea.

Form validator
This project is an example of a typical form structure where you check the values
inputted into the form and validate them before the content gets submitted. A
response is returned to the user if the values do not meet the validation criteria in the
code. Use the following HTML and CSS as a starting template:

<!doctype html>
<html>
<head>
 <title>JavaScript Course</title>
 <style>
 .hide {
 display: none;
 }
 .error {
 color: red;
 font-size: 0.8em;
 font-family: sans-serif;
 font-style: italic;
 }
 input {
 border-color: #ddd;
 width: 400px;
 display: block;
 font-size: 1.5em;
 }
 </style>
</head>
<body>
 <form name="myform"> Email :
 <input type="text" name="email"> </
span>

Intermediate JavaScript

[340]

 Password :
 <input type="password" name="password"> <span class="error
hide">

 User Name :
 <input type="text" name="userName"> </
span>

 <input type="submit" value="Sign Up"> </form>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Using JavaScript, select all the page elements and set them as JavaScript
objects so they are easier to select within the code. Also select all the page
elements that have the error class as an object.

2. Add an event listener to submit and capture the click, preventing the default
form action.

3. Loop through all the page elements that have a class error and add the hide
class, which will remove them from view since this is a new submission.

4. Using the regular expression for valid emails, test the results against the
input value of the email field.

5. Create a function to respond to errors, which removes the hide class from
the element next to the element that triggered the event. Apply focus to that
element within the function.

6. If there is an error that an input does not match the desired regex, pass the
parameters to the error handling function you just created.

7. Check the password field input value to ensure only letters and numbers
are used. Also check the length to ensure that it is 3-8 characters. If either are
false, then add the error with the error function and create a message for the
user. Set the error Boolean to true.

8. Add in an object to track the form data creation and add values to the object
by looping through all the inputs, setting the property name to be the same
as the input name, and the value the same as the input value.

9. Before the end of the validation function, check if an error is still present, and
if it is not, submit the form object.

Chapter 12

[341]

Simple math quiz
In this project, we will create a math quiz that will allow the user to respond to math
questions. The application will check the responses and score the accuracy of the
user's answers to the questions. You can use the following HTML template:

<!doctype html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>
 + </
span> =
 <input type="text" name="answer"><button>Check</button>
 <div class="output"></div>
</body>
</html>

Take the following steps:

1. In JavaScript, wrap the code within a function, app. Within the app function,
create variable objects to contain all the page elements so they can be used in
the script, and create a blank object called game.

2. Add a DOMContentLoaded event listener that invokes the app initialization
once the page loads.

3. Within an init() function, add an event listener to the button, listen for a
click, and track the event into a function called checker. Also within the init
function, load another function called loadQuestion().

4. Create a function to load the questions, and another function that can
generate a random number from min and max values in the arguments.

5. In the loadQuestion() function, generate two random values and add them
to the game object. Calculate the result of both values added together and
assign that value within the game object as well.

6. Assign and update the textContent of the page elements that require the
dynamic number values for the calculation question.

7. When the button is clicked, use a ternary operator to determine whether the
answer to the question was correct or incorrect. Set the color to green for
correct, and to red for incorrect.

Intermediate JavaScript

[342]

8. Create a page element to output all the questions and keep track of the
results. Within the checker() function, append a new element to the HTML
with a style color to indicate a correct or incorrect response. Display the
first and second values as well as the answer, and show the user's response
within brackets.

9. Clear the input field and load the next question.

Self-check quiz
1. What will the following regex expression return from the following words?

Expression / ([a-e])\w+/g
"Hope you enjoy JavaScript"

2. Are cookies part of the document object?
3. What will the following code do to a JavaScript cookie?

const mydate = new Date();
mydate.setTime(mydate.getTime() - 1);
document.cookie = "username=; expires=" + mydate.toGMTString();

4. What is the output in the console from the following code?
const a = "hello world";
(function () {
 const a = "JavaScript";
})();
console.log(a);

5. What is the output in the console from the following code?
<script>
"use strict";
myFun();
console.log(a);
function myFun() {
 a = "Hello World";
}
</script>

Chapter 12

[343]

6. What is the output of the following code?
console.log("a");
setTimeout(() => {
 console.log("b");
}, 0);
console.log("c");

Summary
In this chapter, we had some important, more advanced topics that we still had
to cover, but that you were probably not ready for earlier in the book. After this
chapter, you should have deepened your understanding of JavaScript in several
areas, first and foremost, regular expressions. With regex, we can specify patterns of
strings and we can use these to search other strings for matches to our patterns.

We also considered functions and the arguments object, with which we can access
arguments by their index. We continued with a look at JavaScript hoisting and strict
mode, which enables us to use JavaScript with a few more rules. Getting used to
JavaScript in strict mode is generally a good practice and is great preparation for
working with JavaScript frameworks.

Debugging and tweaking were also discussed: we can use breakpoints or log our
output to the console to get an idea of what is going on. Handling errors well can
prevent unnecessary crashes of our program. Finally, we looked at JavaScript
cookie creation and the use of local storage, along with the use of JSON, a syntax for
sending data around. We saw the different types of key-value pairs and how to parse
JSON. We also saw how to store key-value pairs in the localStorage object of window.

This chapter has deepened our understanding of JavaScript, and we learned some
new things we need to know for modern JavaScript, but also a lot for when dealing
with old (legacy) code. In the next chapter, we'll dive into an even more advanced
topic: concurrency. This topic is about multitasking with your JavaScript code.

[345]

13
Concurrency

It's time for a more advanced topic. You're ready! We are going to deal with the topic
of asynchronous code and some options for multitasking with code. This concept
is called concurrency. Don't worry if you find this chapter a bit of a struggle; this is
programming in JavaScript at a high level. These are the topics we'll be dealing with:

• Concurrency
• Callbacks
• Promises
• async/await
• Event loop

Yes, this is tough, but understanding how to leverage concurrency can really
enhance the performance of your program by speeding up the process, which is
more than enough reason to dive into this advanced topic!

Note: exercise, project, and self-check quiz answers can be found in
the Appendix.

Concurrency

[346]

Introducing concurrency
Concurrency is whenever things are happening "at the same time" or in parallel. To
give a non-code example, let's talk about managing my household. When I come
home on a Friday night, I have a series of tasks: the kids need to eat, to shower, and
to be brought to bed, the laundry needs to be folded and laundry needs to be put in
the machine, and to be fair, a lot more, but this is enough to illustrate the example.

If I were to do this without being able to do multiple things at once, it would be a
very tough night and get very late. I would first make dinner—put a pizza in the
oven and wait next to it—feed the kids, shower them afterward, then bring them to
bed, and then fold the laundry afterward, turn the machine on again, and wait until
it's done. Luckily, I can multitask, so it looks more like this: I put the pizza in the
oven, in the meantime, I turn the washing machine on and maybe fold a few pieces
of laundry, then I feed the kids, do the rest of the laundry while they shower, and
I'm done a lot quicker.

This is the same for your computer and the applications that you use. If it weren't
able to do multiple things at the same time, you would probably be very annoyed.
You wouldn't be able to check your mail while you are writing code, you wouldn't
be able to listen to music while writing code, and a lot more. This is your computer
switching between different tasks. The same thing can happen at the application
level. For example, we can do a call to some API and not wait for the reply but
do something useful in the meantime instead. We can do so using the concept of
concurrency.

There are three strategies in JavaScript that you'll need to know of when working
with concurrency: callbacks, Promises, and the async and await keywords.

Callbacks
Callbacks are the first thing we should understand when we are talking about
concurrency. The good news is that the callback principle is not too hard to
understand. It is just a function that takes another function as an argument, which is
then called when the rest of the initial function has finished. In other words, it's just a
function calling a function, like this:

function doSomething(callback) {
 callback();
}

function sayHi() {

Chapter 13

[347]

 console.log("Hi!");
}

doSomething(sayHi);

The doSomething() function, which is created with the parameter callback, is just
calling whatever function is being passed in as an argument. We call it using the
sayHi() function as an argument, so this code snippet is just a very complicated way
to get Hi! printed to the console.

Here is an example of the callback principle actually doing something:

function judge(grade) {
 switch (true) {
 case grade == "A":
 console.log("You got an", grade, ": amazing!");
 break;
 case grade == "B":
 console.log("You got a", grade, ": well done!");
 break;
 case grade == "C":
 console.log("You got a", grade, ": alright.");
 break;
 case grade == "D":
 console.log("You got a", grade, ": hmmm...");
 break;
 default:
 console.log("An", grade, "! What?!");
 }
}

function getGrade(score, callback) {
 let grade;
 switch (true) {
 case score >= 90:
 grade = "A";
 break;
 case score >= 80:
 console.log(score);
 grade = "B";
 break;
 case score >= 70:

Concurrency

[348]

 grade = "C";
 break;
 case score >= 60:
 grade = "D";
 break;
 default:
 grade = "F";
 }
 callback(grade);
}

getGrade(85, judge);

There are two functions here: judge() and getGrade(). We call the function
getGrade() with two arguments: 85 and the function judge(). Note that when
calling the function as an argument, we do not include the parantheses. The judge()
function gets stored in a callback. After determining the grade, the function that is
stored in a callback (judge() in this case) gets called with the grade.

This could also be another function that does something more useful than judging,
for example, sending a certain email based on test results. If we wanted that, we
actually wouldn't need to change the getGrade() function; we just need to write
a new function to do this and call getGrade() with the new function as a second
argument.

You might be very disappointed right now, because this is not too exciting. Callbacks
become really valuable in an asynchronous context, for example, when one function
is still waiting for the results of a call to the database before calling the callback
function that is going to process the data.

Some JavaScript built-in functions work with this callback principle, for example,
the setTimeOut() and setInterval() functions. They will take a function that is
executed after a certain time in the case of a timeout and every certain amount of
time for the specified interval. We have seen these already, but just as a reminder:

setInterval(encourage, 500);

function encourage() {
 console.log("You're doing great, keep going!");
}

The functions that are inserted as arguments are called callbacks here.
Understanding concurrency really starts with callbacks, but multiple nested
callbacks make code difficult to read.

Chapter 13

[349]

When this is all written as one function with anonymous functions inside, this gets
very indented as well. We call this callback hell or the Christmas tree problem
(because the code gets nested so much, it looks like a Christmas tree on its side).

Callbacks are a great concept, but they can create ugly code very fast. There is often a
better solution, we promise.

Practice exercise 13.1
This exercise will demonstrate how to use a callback function, creating a way to pass
a value from one function to another by invoking a callback function. We will create
a greeting callback using a full name in a string.

1. Create a function named greet() that takes one argument, fullName. That
argument should be an array. Output the items of the array into the console
interpolated into a greeting message string.

2. Create a second function that has two arguments: the first one is a string for
the user's full name, and the second is the callback function.

3. Split the string into an array using the split() method.
4. Send the full-name array to the greet() function created in the first step.
5. Invoke the process of the callback function.

Promises
With Promises, we can organize the sequence of our code in a slightly easier-to-
maintain way. A Promise is a special object that connects code that needs to produce
a result and the code that needs to use this result in the next step.

When we create a Promise, we give it a function. In the following example, we use a
convention that we have seen a lot; we are creating a function on the spot. So, inside
the argument list we are defining the function, often done using arrow functions as
well. This function needs two parameters, and these parameters are callbacks. We
have called them resolve and reject here.

You can call these parameters anything you want, but resolve or
res and reject or rej are most common.

Concurrency

[350]

When resolve() is called, the Promise is presumed to be successful and whatever
is between the arrows is returned and used as input for the then method on the
Promise object. If reject() is called, the Promise failed and the catch() method
on the Promise object (if present) is executed with the argument of the reject()
function.

This is a lot of information that can be hard to understand at first, so here is an
example of a Promise to help you:

let promise = new Promise(function (resolve, reject) {
 // do something that might take a while
 // let's just set x instead for this example
 let x = 20;
 if (x > 10) {
 resolve(x); // on success
 } else {
 reject("Too low"); // on error
 }
});

promise.then(
 function (value) {
 console.log("Success:", value);
 },
 function (error) {
 console.log("Error:", error);
 }
);

We first create a Promise. When creating a Promise, we don't know what the value
of the Promise is going to be. This value is whatever is sent as an argument to the
resolve function. It is a sort of placeholder.

So when we call then on the Promise, we basically say: figure out what the value
of the Promise is, and when you know, execute one function if the Promise was
resolved or a different function if it was rejected. When a Promise is neither resolved
nor rejected, we say that the Promise is pending.

then() is a Promise itself, so when it returns we can use the result for the next then()
instance. This means we can chain the then() instances, which can look like this:

const promise = new Promise((resolve, reject) => {
 resolve("success!");
})

Chapter 13

[351]

 .then(value => {
 console.log(value);
 return "we";
 })
 .then(value => {
 console.log(value);
 return "can";
 })
 .then(value => {
 console.log(value);
 return "chain";
 })
 .then(value => {
 console.log(value);
 return "promises";
 })
 .then(value => {
 console.log(value);
 })
 .catch(value => {
 console.log(value);
 })

This will log:

success!
we
can
chain
promises

The resolve functions are implemented with an arrow function. The return statement
is the value input for the next function. You can see that the last block is a catch()
function. If any of the functions were to result in a rejection and the Promise were
therefore rejected, this catch() block would be executed and print whatever the
reject() function sent to the catch() method. For example:

const promise = new Promise((resolve, reject) => {
 reject("oops... ");
})
 .then(value => {
 console.log(value);
 return "we";
 })

Concurrency

[352]

 .then(value => {
 console.log(value);
 return "can";
 })
 .then(value => {
 console.log(value);
 return "chain";
 })
 .then(value => {
 console.log(value);
 return "promises";
 })
 .then(value => {
 console.log(value);
 })
 .catch(value => {
 console.log(value);
 })

This will just log oops… because the first Promise was rejected instead of resolved.
This is great for creating asynchronous processes that need to wait till another
process is complete. We can try to do a certain set of actions and when something
goes wrong, use a catch() method to deal with it.

Practice exercise 13.2
In this exercise, you will create a counter that will output the values in sequence
using Promises.

1. Set up a Promise that resolves with a value of Start Counting.
2. Create a function named counter() that has one argument that gets the value

and outputs it into the console.
3. Set up the next function in the Promise with four then() instances, which

should output a value into the counter function, and return a value which
will provide input for the subsequent then() instance. The returned values
should be one, then two, then three. The screen output in the console should
be the following:

Start Counting
One
Two
Three

Chapter 13

[353]

async and await
We have just seen the Promise syntax. With the async keyword, we can make a
function return a Promise. This makes the Promises nicer to read and look a lot like
synchronous (non-concurrent) code. We can use this Promise just like we learned in
the previous section, or we can use the more powerful await keyword to wait until
the Promise is done. await only works in an asynchronous function.

In an asynchronous context, we can await other Promises as well, as can be seen in
this example:

function saySomething(x) {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve("something" + x);
 }, 2000);
 });
}

async function talk(x) {
 const words = await saySomething(x);
 console.log(words);
}

talk(2);
talk(4);
talk(8);

Can you figure out what this code does? We call the asynchronous function talk()
three times in a row with no break. Each of these function calls is awaiting the
saySomething() function. The saySomething() function contains a new Promise
that is being resolved with a setTimeout() function that waits two seconds before
resolving with the value of something plus x. So after two seconds, the three
functions are done at the same time (or so it seems to the human eye).

If the talk() function were not asynchronous, it would throw a SyntaxError because
of the await keyword. await is only valid in asynchronous functions, so talk() must
be asynchronous. Without the async and the await in this example, it would store the
result of the function saySomething(), a pending Promise, in words and log that once
for every function call:

Promise { <pending> }
Promise { <pending> }
Promise { <pending> }

Concurrency

[354]

We have now seen the basic building blocks of concurrency. This should prepare you
for working with concurrency in real life. Concurrency really is an advanced topic;
debugging it is troublesome, but it is really worth while in terms of performance
when applied at the right moment.

Practice exercise 13.3
This exercise will demonstrate how to use await to wait on a Promise inside an async
function. Using await and async, create a counter with timeout(), and increment a
global counter value.

1. Create a global value for a counter.
2. Create a function that takes one argument. Return the result of a new

Promise, setting a setTimeout() function that will contain the resolve
instance.

3. Increment the counter within setTimeout(), adding one every second.
Resolve the Promise with the value of the counter and the value of the
variable that was in the function argument.

4. Create an asynchronous function that outputs into the console the value of
the global counter and the value of the argument of the function.

5. Create a variable to capture the returned resolve value from the await
function. Output that result into the console.

6. Create a loop to iterate 10 times, incrementing the value and invoking the
async function, passing the value of the increment variable as the parameter
in the function.

The results should look like the following:

ready 1 counter:0
ready 2 counter:0
ready 3 counter:0
x value 1 counter:1
x value 2 counter:2
x value 3 counter:3

Chapter 13

[355]

Event loop
We would like to end this chapter by explaining how JavaScript handles asynchrony
and concurrency under the hood. JavaScript is a single-threaded language. A thread
in this context means a path of execution. If there is only a single path, this means that
tasks will have to wait for one another and only one thing can happen at a time.

This single executor is the event loop. It's a process that executes the actual work.
You may wonder about this, because you've just learned about concurrency and
doing things asynchronously and at the same time. Well, even though JavaScript
is single-threaded, it doesn't mean that it cannot outsource some tasks and wait
for them to come back. This is exactly how JavaScript manages to do things in a
multithreaded manner.

Call stack and callback queue
JavaScript works with a call stack, and all the actions that it has to execute are
queued up here. The event loop is a process that is constantly monitoring this call
stack, and whenever there are tasks to do, the event loop does them one by one. The
tasks on top get executed first.

Here's a tiny script:

console.log("Hi there");
add(4,5);

function add(x, y) {
 return x + y;
}

Concurrency

[356]

Here's a visualization of the call stack and event loop for this script.

Figure 13.1: Visualization of the event loop and the call stack

No multithreading is going on here. But it is here:

console.log("Hi there");
setTimeout(() => console.log("Sorry I'm late"), 1000);
console.log(add(4, 5));

function add(x, y) {
 return x + y;
}

Chapter 13

[357]

The setTimeout() task gets outsourced to the browser's web API (more on APIs in
Chapter 15, Next Steps). When it's done, this appears in a special place: the callback
queue. When the call stack is empty (and only then!), the event loop will check the
callback queue for work to do. If there are any callbacks waiting, they'll be executed,
one by one. After every action, the event loop will check the call stack for work first.

Here's a visualization of the situation with the outsourcing of setTimeout():

Figure 13.2: Visualization of the setTimeout being outsourced

Concurrency

[358]

When setTimeout() expires, the event loop will have done whatever was on the call
stack already, and will check the callback queue and execute any tasks on there:

Figure 13.3: Visualization of the task on the callback queue

And this is what it will output:

Hi there
9
Sorry I'm late

Let's see if you read the above text well. What do you think will happen when we set
the timer to 0, like here?

console.log("Hi there");
setTimeout(() => console.log("Sorry I'm late"), 0);
console.log(add(4,5));

Chapter 13

[359]

function add(x, y) {
 return x + y;
}

This will output the exact same thing. setTimeout() will also be outsourced when
the timer is at 0. The callback is placed in the callback queue right away, but the
event loop won't even check the callback queue until the callstack is empty. So it will
still print Sorry I'm late after 9, even though the timer is at 0.

Chapter project

Password checker
Using an array of allowed passwords, this exercise will create an application to check
if one of these password string values exists in an array that lists all the accepted
passwords. Set a Promise to check if the password is valid, and upon the result either
resolve with the status of true or reject with the status of false. Return the check
results.

1. Create an array of allowed passwords.
2. Create a login function that will check if the argument is a value that is

included in the passwords array. You can use indexof() or the includes()
method to check the array for a value and return a Boolean value of the
result.

3. Add a function that returns a Promise. Using resolve and reject, return a
JavaScript object with the Boolean of true or false to indicate the password
validity status.

4. Create a function that checks the password, sending it to the login function,
and using then() and catch(), outputs the result of either the rejected
password or the resolved password.

5. Send several passwords, some within the array, others not, to the checker
function.

The includes() method is an array method that can
check whether a certain value is included among the items
in the array. It will return a Boolean value depending on
the result.

Concurrency

[360]

Self-check quiz
1. Fix the error in the following code to use the callback function:

function addOne(val){
 return val + 1;
}
function total(a, b, callback){
 const sum = a + b;
 return callback(sum);
}
console.log(total(4, 5, addOne()));

2. Write down the result of the following code:
function checker(val) {
 return new Promise((resolve, reject) => {
 if (val > 5) {
 resolve("Ready");
 } else {
 reject(new Error("Oh no"));
 }
 });
}
checker(5)
 .then((data) => {console.log(data); })
 .catch((err) => {console.error(err); });

3. What line(s) of code need to be added to the preceding function so that there
is always a result after the function runs that ensures the word done is output
into the console?

4. Update the below code to make the function return a Promise:

function myFun() {
 return "Hello";
}
myFun().then(
 function(val) { console.log(val); },
 function(err) { conole.log(err); }
);

Chapter 13

[361]

Summary
In this chapter, we've discussed concurrency. Concurrency enables our code to do
multiple things at the same time and we can determine the order of things using
callbacks, Promises, and the async and await keywords. Implementing these in
your applications and pages will improve the user experience a lot! Users are quite
demanding nowadays; if a website isn't loading fast enough, they bounce (go back
to, for example, Google). Concurrency helps to deliver results faster.

The next two chapters are about using JavaScript for modern web development and
will be dealing with HTML5 and JavaScript and modern JavaScript frameworks that
are real game-changers.

[363]

14
HTML5, Canvas, and

JavaScript
HTML5 was released in 2012 and became standardized in 2014, which caused
browsers to support all sorts of new features. The introduction of HTML5 impacted
the realm of possibilities that are available through JavaScript. The options for
graphics, videos, interaction with graphics, and a lot more with JavaScript have
increased tremendously since the introduction of HTML5, and have been so
revolutionary that in fact, they led to the end of support of Flash by web browsers.

HTML5 allows web page(s) to be better structured by adding new elements, such as
<header>. And also the DOM has improved quite a bit, which has led to increased
performance. There are quite a few other additions and you'll see some of them
in the chapter. Another fun (and useful) addition worth mentioning here is the
<canvas> element, which we'll cover in this chapter as well.

JavaScript gives us a lot of amazing features already, but together with HTML5
there is a lot more possible when it comes to creating dynamic interactive web apps.
This combination enables us to level up our content presentation game. We can
work with files in the browser now, as well as drawing on the HTML5 canvas and
adding images and text to it.

In this chapter, we will be examining some of the amazing things HTML5 has
brought us. The topics don't all relate to one another directly, but they have in
common that they were made possible by the powerful team of HTML5 and
JavaScript, and of course, that they are all fun and useful. They will allow you to
create an even more dynamic and interactive experience for the users of your app.

HTML5, Canvas, and JavaScript

[364]

These are the topics that will be covered in this chapter:

• Introducing HTML5 with JavaScript
• Local file reader
• GeoLocation
• HTML5 canvas
• Dynamic canvas
• Drawing on the canvas with the mouse
• Saving dynamic images
• Media on the page
• Digital accessibility

Introducing HTML5 with JavaScript
HTML5 is formally a version of HTML. It is a huge step up compared to its
predecessor and enables us to make full applications in the web browser that are
even accessible offline. When you read HTML5 in a job description, it often means
more than just HTML. Usually, the combination of HTML5 with JavaScript, CSS,
JSON, and others is included here as well.

Since HTML5 the structure of our page has improved. We have new elements
such as <header>, <nav>, and <article>. And we can play videos with the <video>
element, which means we no longer need Flash since HTML5. And as we already
mentioned we can work with the <canvas> element to create visuals on the page or to
represent visuals such as animation, graphs, and others. Some things that had to be
done with JavaScript in the past can now be done solely with HTML, such as adding
video and audio to a webpage.

Changes to the DOM also improved the loading time of web page(s). We are going
to dive into some of the HTML5-specific features in this chapter. Let's start with
accessing files from the browser.

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Chapter 14

[365]

Local file reader
Since HTML5 we can finally interact with local files using the JavaScript that runs in
our browser, which is really an amazing feature. Using this feature, we can upload
files from our device to our web app and read from them in our app. This means that
we can attach files to forms for example, which is great in many cases whenever we
need to upload some sort of file for whatever purpose, for example, adding a résumé
to your online job application.

Let's first make sure that the browser you are using supports this. We can run a
simple script to check whether it does:

<!DOCTYPE html>
<html>
 <body>
 <div id="message"></div>
 <script>
 let message = document.getElementById("message");
 if (window.FileReader) {
 message.innerText = "Good to go!";
 } else {
 message.innerText = "No FileReader :(";
 }
 </script>
 </body>
</html>

If you open this file in your browser it should say Good to go! when your browser
supports file reading. Try updating your browser or using another one if it says No
FileReader :(. Browsers that will work are, for example, Chrome and Firefox.

Uploading files
Uploading files is actually easier than you might think. We indicate we want to
upload a file by adding an input of type file. Here is a basic script that does just that:

<!DOCTYPE html>
<!DOCTYPE html>
<html>
 <body>
 <input type="file" onchange="uploadFile(this.files)" />
 <div id="message"></div>

HTML5, Canvas, and JavaScript

[366]

 <script>
 let message = document.getElementById("message");

 function uploadFile(files) {
 console.log(files[0]);
 message.innerText = files[0].name;
 }
 </script>
 </body>
</html>

It gives a blank HTML page with a Choose file button and the No file chosen
comment behind it. Clicking on the button pops up the filesystem and you can
select a file. After selecting the file, the JavaScript gets triggered. And as you can
see, we are sending in the property files that are active in our body. This is a list of
files. Therefore, we are grabbing the 0th index, the first element in the list. Files are
represented as objects.

The file object gets logged to the console here, which enables you to see all the
properties and associated values. Some of the important properties are the name,
size, type, and lastModified, but there are many more.

We are putting the name of our file in the innerText of our div message. So, on the
screen, you will see the name of the file appear in the div. We can do something
similar for multiple files. Here is how to upload multiple files at the same time:

<html>
 <body>
 <input type="file" multiple onchange="uploadFile(this.files)" />
 <div id="message"></div>
 <script>
 let message = document.getElementById("message");

 function uploadFile(files) {
 for (let i = 0; i < files.length; i++) {
 message.innerHTML += files[i].name + "
";
 }
 }
 </script>
 </body>
</html>

Chapter 14

[367]

We have added the multiple attribute to our input element. This changes the text on
the button; instead of Choose file it now says Choose files, and we can select more
than one file as a result.

We have changed our upload function a bit as well by adding a loop. And instead
of innerText, we are now using innerHTML, because then we could insert a break
using the HTML break. It will output the names of all the selected files below the
input box on the screen.

Reading files
There is a special JavaScript object for reading files. It has a very suitable name:
FileReader. Here is how we can use it to read a file.

<!DOCTYPE html>
<html>
 <body>
 <input type="file" onchange="uploadAndReadFile(this.files)" />
 <div id="message"></div>
 <script>
 let message = document.getElementById("message");

 function uploadAndReadFile(files) {
 let fr = new FileReader();
 fr.onload = function (e) {
 message.innerHTML = e.target.result;
 };
 fr.readAsText(files[0]);
 }
 </script>
 </body>
</html>

As you can see, we have to specify what needs to happen in order to connect
our HTML and JavaScript to a file. We do this by adding the onload event as an
anonymous function that is sending on the event data.

Reading the data can then be done using one of the readAs() methods on the
FileReader object. We have used readAsText() here, because we are dealing with a
text file. This triggers the actual reading and the onload function that comes with it
gets triggered when it's done, adding the result of the reading to our message. This
accepts all file types, but not all file types will make sense.

HTML5, Canvas, and JavaScript

[368]

In order to see something sensible, we will have to upload something that contains
plain text, such as .txt, .json, and .xml. With this we can also send a file to the
server or process the contents of a log file.

Practice exercise 14.1
This exercise will demonstrate the process of uploading and displaying local image
files in your webpage. Use the following HTML and CSS as a starting template:

<!doctype html>
<html>
<head>
 <title>Complete JavaScript Course</title>
 <style>
 .thumb {
 max-height: 100px;
 }
 </style>
</head>
<body>
 <input type="file" multiple accept="image/*" />
 <div class="output"></div>
 <script>

 </script>
</body>
</html>

Take the following steps to complete the script element:

1. Select your page elements as values within variable objects in your JavaScript
code.

2. Add an event listener to the input field. The event trigger should be changed
so that it immediately invokes a reader function.

3. Create a function to handle the reading of the selected files.
4. Using the event object, select the target element that triggered the event. Get

the files selected within that input and assign them to the files variable.
5. Loop through all the files that were selected.
6. Set the files by index within the loop to a variable named file.

Chapter 14

[369]

7. Set the image file as the file within the loop selected from the user input field
files.

8. Add the newly created img tag to the page, create an area on the page that
you can output the content to, and append the new page element to it.

9. Create a new FileReader object.
10. Add an onload event listener to the fileReader object to create and invoke an

anonymous function that sets the source of the image as the result from the
target element. Pass in the image object you just created as an argument into
the function.

11. Using readAsDataURL(), get the current file object and pass it into the file
reader object so that it can be used once the onload completes and is added to
the page.

12. You can now select multiple image files from your computer and have them
show on your webpage.

Getting position data with GeoLocation
We are going to look at the window object navigator now to see whether we can
locate the user of the browser. This can be useful for many things, for example,
suggesting restaurant locations nearby the user. We can have a look at the
GeoLocation by inspecting navigator.geolocation. This is one way to do it:

<!DOCTYPE html>
<html>
 <body>
 <script>
 window.onload = init;

 function init() {
 console.dir(navigator.geolocation);
 }
 </script>
 </body>
</html>

HTML5, Canvas, and JavaScript

[370]

If you check out the log, you can see what the GeoLocation object contains, and one
of these methods is to get the current position of the user. Here is how to use it:

<!DOCTYPE html>
<html>
 <body>
 <script>
 window.onload = init;

 function init() {
 navigator.geolocation.getCurrentPosition(showGeoPosition);
 }

 function showGeoPosition(data) {
 console.dir(data);
 }
 </script>
 </body>
</html>

This might look a bit more complicated than you'd expect, and this is because
the getCurrentPosition() method takes another method as an argument. The
position data gets sent to this function and that function will use the data as input.
Therefore, we will have to wrap console.dir() in an external function (called
showGeoPosition()) that takes a parameter and outputs this data so that we can see
the data in the console. We can then send this function to the getCurrentPosition()
function and see the data.

If you run this, you should get a GeolocationPosition object, with a coords property
containing your latitude and longitude. The browser might prompt whether you're
okay with sharing your location. And if it doesn't show anything, make sure the
preferences and settings of your computer allow the browser to use your location.

Using this, you can get the location of the user and show personalized content based
on it or gather data about their location for other purposes, such as analyzing where
visitors are located or displaying suggestions for the user based on their location.

HTML5 canvas
Did we already mention that the <canvas> element is new in HTML5? This is an
amazing tool that will help you create dynamic web apps. Here is how to set up the
canvas:

Chapter 14

[371]

<!DOCTYPE html>
<html>
 <body>
 <canvas id="c1"></canvas>
 <script></script>
 </body>
</html>

And when you open this page, you will see nothing. Why? Well, the canvas element
is, by default, a white rectangle that you cannot see against the white background.
You could add some CSS to add a border to the canvas or a background color to the
body and your canvas will be revealed.

But, we probably want to put something on it and we need JavaScript to make that
happen. Let's create a "drawing" on it using JavaScript:

<!DOCTYPE html>
<html>
 <head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="c1"></canvas>
 <script>
 let canvas = document.getElementById("c1");
 let ctx = canvas.getContext("2d");
 canvas.width = 500; //px
 canvas.height = 500; //px
 ctx.fillRect(20, 40, 100, 100);
 </script>
 </body>
</html>

The context of the canvas is read and stored in the ctx variable (a common shortened
version of context). We need this to be able to draw on the canvas. We change the
dimensions of the canvas to 500 by 500 pixels. This is not the same as using CSS for
width and height; this adds the HTML attributes' width and height.

HTML5, Canvas, and JavaScript

[372]

With the fillRect() method on the context of the canvas, we can draw a rectangle
on the canvas. It takes four parameters. The first two are the x and y coordinates
of where the figure should be added to the canvas. The last two are the width and
height of the rectangle. In our case, it's a square. Here is what the result looks like:

Figure 14.1: Result of the fillRect() method on our 500 px by 500 px canvas

We can also change the color we are drawing with. You can get a pink square instead
by replacing the JavaScript of the previous HTML document with the following:

 <script>
 let canvas = document.getElementById("c1");
 let ctx = canvas.getContext("2d");
 canvas.width = 500; //px
 canvas.height = 500; //px
 ctx.fillStyle = "pink";
 ctx.fillRect(20, 40, 100, 100);
 </script>

There are more things you can do with the canvas than just drawing. Let's have a
look at adding text to our canvas.

We have now just used the word pink, but you can also work with
hexadecimal color codes for the fillStyle property, which could
look like this for pink: #FFC0CB. The first two characters specify the
amount of red (FF here), the third and fourth the amount of green
(C0), and the last two the amount of blue (CB). The values differ
from 00 to FF (0 to 255 in decimal numbers).

Chapter 14

[373]

Practice exercise 14.2
We will be implementing shapes and using the HTML5 canvas element to draw
on a webpage with JavaScript. Draw a rectangle using JavaScript. The output will
resemble the following:

Figure 14.2: Exercise outcome

Take the following steps:

1. Add the canvas element to the page.
2. Set the width and height to 640 px and, using CSS, add a 1 pc border to the

element.
3. Within the JavaScript, select the canvas element and set the Context to 2d.
4. Set the fill style to red.
5. Create an output of the shape by using a rectangle.
6. Set the outline of the rectangle.
7. Clear the rectangle inside to make it transparent and the color of the

background.

Dynamic canvas
We can draw more advanced shapes, add images, and add text. This enables us to
take our canvas skills to the next level.

HTML5, Canvas, and JavaScript

[374]

Adding lines and circles to the canvas
Here we will see how to draw a line and a circle. Here is a piece of sample code that
draws a line:

<!DOCTYPE html>
<html>
 <head>
 <style>
 #canvas1 {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas1"></canvas>
 <script>
 let canvas = document.getElementById("canvas1");
 let ctx = canvas.getContext("2d");
 canvas.width = 100;
 canvas.height = 100;
 ctx.lineWidth = 2;
 ctx.moveTo(0, 20);
 ctx.lineTo(50, 100);
 ctx.stroke();
 </script>
 </body>
</html>

The line width is set to 2 pixels. This first puts the focus to 0 (x) and 20 (y). This
means it is at the very left edge of the canvas, 20 pixels from the top. This canvas is
smaller; it is 100 by 100 pixels. The second point is at 50 (x) and 100 (y). This is what
the line looks like:

Figure 14.3: Outcome of drawing a line to the canvas

Chapter 14

[375]

And before we move over to text, here is how to draw a circle.

<!DOCTYPE html>
<html>
 <head>
 <style>
 #canvas1 {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas1"></canvas>
 <script>
 let canvas = document.getElementById("canvas1");
 let ctx = canvas.getContext("2d");
 canvas.width = 150;
 canvas.height = 200;
 ctx.beginPath();
 ctx.arc(75, 100, 50, 0, Math.PI * 2);
 ctx.stroke();
 </script>
 </body>
</html>

We use the arc() method to create a curve or a circle. It takes five parameters:

• start position x on canvas
• start position y on canvas
• radius of the circle
• starting angle in radians
• ending angle in radians

HTML5, Canvas, and JavaScript

[376]

So, if we don't want a circle, but a semicircle, for example, we'll have to specify a
different starting and end angle in radians. This time we used the stroke() method
to do the actual drawing instead of the fill() method:

Figure 14.4: Outcome of drawing a circle using the arc() method

Stroke() is only drawing the line, whereas fill() colors the full shape.

In the canvas, the shapes and lines will be added on top of each other, based on the
order in which they're drawn. The first one you draw is underneath the latter ones.
Exactly what happens when you paint on a real canvas. You will be seeing this in the
next practice exercise.

Practice exercise 14.3
In this exercise, you will be drawing a stick person using canvas:

Figure 14.5: Exercise result within the web browser canvas element

Chapter 14

[377]

1. Create the page elements and prepare to draw on the canvas.
2. Begin the path with an arc roughly at the top center of your canvas object.
3. Using arc(), set a position for the left eye, roughly at the top left of the center

of the arc you just drew, then add another arc for the right eye. Create a half
arc for the mouth (the radian angle for a semicircle is pi) and fill all.

4. Move the draw position to the center and draw a line for the nose.
5. Draw the body with a line down from the center of the arc, create the left

arm, and then move the draw position to do the right arm, which will be
twice the width of the left arm. Move back to the center and continue down
to draw the left leg, move back to the center, and draw the line for the right
leg.

6. Move to the top, set the colour to blue, and draw a triangle for a hat.

Adding text to the canvas
We can add text to the canvas in a similar fashion as well. In this example, we set a
font and a font size, and then write our text to the canvas:

<!DOCTYPE html>
<html>
 <head>
 <style>
 #canvas1 {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas1"></canvas>
 <script>
 let canvas = document.getElementById("canvas1");
 let ctx = canvas.getContext("2d");
 canvas.width = 200;
 canvas.height = 200;
 ctx.font = "24px Arial";
 let txt = "Hi canvas!";
 ctx.fillText(txt, 10, 35);
 </script>
 </body>
</html>

HTML5, Canvas, and JavaScript

[378]

The fillText() method is used to add text. We have to specify three parameters: the
text, the x position, and the y position. Here is the result:

Figure 14.6: Result of using the fillText() method

We have specified 35 px from the top for the text to start. We can specify other
aspects of the text, for example, like this:

ctx.textAlign = "center";

Here, we use the textAlign property on the canvas to specify how the text should
be aligned.

Practice exercise 14.4
We will work with text and add text to your canvas element. The following exercise
will demonstrate how to dynamically add text and position it within your canvas
element. The result from the exercise code will look similar to this diagram:

Chapter 14

[379]

Figure 14.7: Exercise outcome

Take the following steps:

1. Create a simple HTML document, and add the canvas element to your page.
Set the height and width to 640, and add a 1 px border to the element so you
can see it on the page.

2. Select the page elements as values within JavaScript variables.
3. Create a string variable with the message Hello World.
4. Set a font style using the font property and a blue fill color using the

fillStyle property. You can also align the text to the left.
5. Add the text to the canvas with fillText and set the x and y positions of the

text.
6. Set a new font and color of red.
7. Create a loop and, using the value of the loop variable, add text to the page

canvas element.

HTML5, Canvas, and JavaScript

[380]

Adding and uploading images to the canvas
We can add an image to the canvas. We can simply get an image from our page, and
add it to our canvas:

<!DOCTYPE html>
<html>
 <head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="c1"></canvas>

 <script>
 window.onload = function () {
 let canvas = document.getElementById("c1");
 canvas.height = 300;
 canvas.width = 300;
 let ctx = canvas.getContext("2d");
 let myImage = document.getElementById("flower");
 ctx.drawImage(myImage, 10, 10);
 };
 </script>
 </body>
</html>

We wrap it all in an onload event listener here because we want to be sure that
the image is loaded before getting it from the DOM, else the canvas will remain
empty. We use the drawImage() method to add an image to the canvas. It takes three
arguments: the image, the x position, and the y position.

We can use one canvas inside another canvas as well. We do this exactly like we did
when we were using the image. This is a very powerful feature, because it enables
us to use a part of the drawing from the user input, for example. Let's look at an
example of how to do this:

<!DOCTYPE html>
<html>
 <head>
 <style>

Chapter 14

[381]

 canvas {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas1"></canvas>
 <canvas id="canvas2"></canvas>
 <canvas id="canvas3"></canvas>
 <script>
 let canvas1 = document.getElementById("canvas1");
 let ctx1 = canvas1.getContext("2d");
 ctx1.strokeRect(5, 5, 150, 100);

 let canvas2 = document.getElementById("canvas2");
 let ctx2 = canvas2.getContext("2d");
 ctx2.beginPath();
 ctx2.arc(60, 60, 20, 0, 2 * Math.PI);
 ctx2.stroke();

 let canvas3 = document.getElementById("canvas3");
 let ctx3 = canvas3.getContext("2d");
 ctx3.drawImage(canvas1, 10, 10);
 ctx3.drawImage(canvas2, 10, 10);
 </script>
 </body>
</html>

We create three canvases, to two we add shapes, and the third one is a combination
of the first two. Here is what it looks like:

Figure 14.8: The result: three canvases with shapes

We also can upload images to the canvas. This can be of great use when you want
to show a preview to your user of something that was just uploaded, for example, a
profile picture. This is very similar to grabbing the element from the webpage
and using that element, but this time we need to read our data from the uploaded
file, create a new image element, and then draw that image to the canvas.

HTML5, Canvas, and JavaScript

[382]

The below code does just that:

<html>
 <head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <input type="file" id="imgLoader" />

 <canvas id="canvas"></canvas>
 <script>
 let canvas = document.getElementById("canvas");
 let ctx = canvas.getContext("2d");
 let imgLoader = document.getElementById("imgLoader");
 imgLoader.addEventListener("change", upImage, false);
 function upImage() {
 let fr = new FileReader();
 fr.readAsDataURL(event.target.files[0]);
 fr.onload = function (e) {
 let img = new Image();
 img.src = event.target.result;
 img.onload = function () {
 canvas.width = img.width;
 canvas.height = img.height;
 ctx.drawImage(img, 0, 0);
 };
 console.log(fr);
 };
 }
 </script>
 </body>
</html>

Every time the input of the input field changes, the upImage() method gets executed.
This method does a few things, so let's break them down. First of all, we create a
new FileReader and add the uploaded file. There is only one in this case, so we
use index 0. Instead of readAsText() that we have already seen, we are now using
readAsDataURL(), which we can use to read images.

Chapter 14

[383]

This will trigger the onload event. And in our case, this creates a new image that can
be added to the canvas later. As a source, we add the result of our read action and
when the image is loaded, we change the size of our canvas to the size of our picture
and then add the picture in there.

These new skills will enable you to work with images on canvases, draw your own
images, upload images from elsewhere, and even re-use the ones on the webpage.
This can come in handy for many situations, for example, to create basic animation,
or to create the functionality to upload a new profile picture to a user's profile.

Practice exercise 14.5
We will practice uploading a local image to the canvas. The following exercise
will demonstrate how to upload images from your local computer and have them
displayed within the canvas element within your browser.

1. Set up the page elements and add an input field to upload an image. Add the
canvas element to the page.

2. In JavaScript, select the input field and the canvas elements as JavaScript
objects.

3. Add an event listener to invoke an upload function once there is a change in
the input field contents.

4. Create the aforementioned function to handle the upload of the image
to the canvas. Using FileReader, create a new FileReader object. In the
reader.onload event, create a new image object.

5. Add an onload listener to the image object so that when the image is loaded,
set the canvas height and width to match half the image size height and
width. Using ctx.drawImage(), add the image to the canvas.

6. Set the img source to the result from the input value.
7. Use the reader object and invoke readAsDataURL() to convert the file input

value to a readable format of base64 image data that can be used within the
canvas.

Adding animations to the canvas
With the methods we have seen so far, we can already start creating animations. We
do this by using loops and recursion, combined with timeout(). These drawings
with (short) time intervals result in an animation. Let's start with a basic animation:

<!DOCTYPE html>
<html>

HTML5, Canvas, and JavaScript

[384]

 <head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
 </head>

 <body>
 <canvas id="canvas"></canvas>
 <script>
 window.onload = init;
 var canvas = document.getElementById("canvas");
 var ctx = canvas.getContext("2d");
 canvas.height = 500;
 canvas.width = 500;
 var pos = {
 x: 0,
 y: 50,
 };

 function init() {
 draw();
 }

 function draw() {
 pos.x = pos.x + 5;
 if (pos.x > canvas.width) {
 pos.x = 0;
 }
 if (pos.y > canvas.height) {
 pos.y = 0;
 }

 ctx.fillRect(pos.x, pos.y, 100, 100);
 window.setTimeout(draw, 50);
 }
 </script>
 </body>
</html>

Chapter 14

[385]

This will start drawing a square at position 5, 50. And after 50 ms, it will draw
another square at position 10, 50, and after that at 15, 50. And it will keep on
changing this x value by 5 up to the point that x gets bigger than the width of the
canvas, when it is then set to zero. This way, the last bit of white canvas on that line
gets colored black too.

Right now, it is more creating a line, and not a moving square. This is because we
keep on adding the colored part to the canvas, but not resetting it to the previous
color. We can do this with the clearRect() method. This method takes four
parameters. The first two are the starting point to draw the rectangle to be cleared
(so x, y). The third one is the width of the rectangle to be cleared and the last one is
the height. In order to clear the full canvas, we'll have to write:

ctx.clearRect(0, 0, canvas.width, canvas.height);

Adding this to the beginning of the draw function in our previous example results in
a moving square instead of a fat line being drawn because the previous square is not
kept, but the canvas resets every time and the square gets drawn from scratch.

Practice exercise 14.6
We will practice animating shapes and moving objects on the page. This exercise will
demonstrate how to move an object on the page using the HTML5 canvas element
and JavaScript.

Figure 14.9: Red circle moving within the boundaries of the canvas object

HTML5, Canvas, and JavaScript

[386]

Take the following steps to create a red circle that will then be moved within the
canvas boundaries, appearing to be bouncing off the sides:

1. Create the canvas and apply a border of 1 px to it.
2. Select the canvas page elements with JavaScript and prepare to draw on the

canvas.
3. Create variables to track the x and y positions, as well as the x-direction

speed and the y-direction speed. You can set these as a default of 1 and the x
and y starting positions can be half of the canvas dimensions.

4. Create a function to draw the ball. This will draw the ball as a red ball arc in
the x and y positions. Also, the size for the ball should be set as a variable so
that the boundaries can be calculated from it. Fill and close the path.

5. Create a function to move the ball and set the interval on that function to 10
milliseconds.

6. In the aforementioned movement function, clear the current rectangle and
draw the ball using the draw ball function.

7. Check the position of the ball. If the ball is outside the canvas boundaries,
you need to change direction. This can be done by multiplying the direction
by -1. Update the x and y positions with the new values.

Drawing on canvas with a mouse
We have all the ingredients already to create a canvas on which we can draw with
our mouse. Let's walk you through it. We'll start by setting up the canvas:

<!DOCTYPE html>
<html>
 <head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
 </head>
 <body>
 <canvas id="canvas"></canvas>
 <input type="color" id="bgColor" />

Chapter 14

[387]

 <script>
 let canvas = document.getElementById("canvas");
 let ctx = canvas.getContext("2d");
 canvas.width = 700;
 canvas.height = 700;
 </script>
 </body>
</html>

In our script element, we are going to add a method for when the window has
loaded. When the window has loaded, we need to add some event listeners:

window.onload = init; // add this line to the start of the script

function init() {
 canvas.addEventListener("mousemove", draw);
 canvas.addEventListener("mousemove", setPosition);
 canvas.addEventListener("mouseenter", setPosition);
}

We want to draw when the mouse is moving, and we want to change the current
position on the canvas when the mouse is moving. This is also something we want
to do on mouseenter. Let's write the code for setting the position. This will be added
to the script element as well. We will also have to add the position variable, which
again should be declared at the start of the script:

let pos = {
 x: 0,
 y: 0,
};

And the function for setting the position:

function setPosition(e) {
 pos.x = e.pageX;
 pos.y = e.pageY;
}

This function gets triggered on mousemove and on mouseenter. The event that triggers
this has a pageX and a pageY property we can use to get the current position of the
mouse.

HTML5, Canvas, and JavaScript

[388]

The last must-have ingredient for drawing on the canvas is the draw() method. Here
is what it could look like:

function draw(e) {
 if (e.buttons !== 1) return;
 ctx.beginPath();
 ctx.moveTo(pos.x, pos.y);
 setPosition(e);
 ctx.lineTo(pos.x, pos.y);
 ctx.lineWidth = 10;
 ctx.lineCap = "round";
 ctx.stroke();
}

We start with something that might look strange, but it is a great trick to make sure
that the mouse is actually being clicked. We don't want to be drawing when no
button on the mouse is clicked. This method prevents that by returning from the
method if it is not being clicked.

Then we start to begin a path. We always have a current x and y, so they are set as
coordinate one, and then we set them again and use these new coordinates for the
line. We give it a round linecap to achieve smooth lines and a line width of 10. Then
we draw the line, and as long as the mouse is moving, the draw() function gets
called again.

The app can now be opened and used as a functioning drawing tool. We can also
give the user more options here, for example, adding a color picker to change the
color that the user is drawing with. In order to do that, we'll have to add a color
picker to the HTML, like this:

<input type="color" id="bgColor" />

And change the selected color in JavaScript by adding an event listener for when the
value of that input box changes:

let bgColor = "pink";
let bgC = document.getElementById("bgColor");
bgC.addEventListener("change", function () {
 bgColor = event.target.value;
});

We start with the color pink, and overwrite it with whatever the user selects in the
color picker.

Chapter 14

[389]

Practice exercise 14.7
We will create an online drawing board, and include a dynamic value for width,
color, and ability to erase the current drawing. Use the following HTML as a
template for this project to add JavaScript code to:

<!doctype html>
<html>
<head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <div class="controls">
 <button class="clear">Clear</button> Color
 <input type="color" value="#ffff00" id="penColor">
Width
 <input type="range" min="1" max="20" value="10"
id="penWidth"> </div>
 </div>
 <canvas id="canvas"></canvas>
 <script>

 </script>
</body>
</html>

Take the following steps:

1. Select the page elements as variable objects in JavaScript. Get the input field
and select the button as an object.

2. Add an event listener to the button that will run a function to clear the
current canvas. Within the clear function, use the confirm() method to check
if the user wants to erase the canvas drawing. If they then confirm using
clearRect(), delete the contents of the canvas element.

3. Set a global position object for x and y and by adding event listeners to the
mouse events, update the position. If the mouse move is triggered, invoke
a draw function. Set the position to update the mouse position, setting the
global position values to that of the mouse x and y.

HTML5, Canvas, and JavaScript

[390]

4. Within the draw function, check if the mouse button is pressed, and if not,
then add return. If it is pressed, we can then draw on the canvas. Set the new
path and move to the positions x and y. Start a new line, get the strokestyle
value from the color input field, and set the linewidth value from the input
width value. Add the stroke() method to add the new line to the page.

Saving dynamic images
We can convert the canvas to an image, and this image can then be saved as a next
step. In order to convert it to an image, we need to add the following to our script
element:

let dataURL = canvas.toDataURL();
document.getElementById("imageId").src = dataURL;

We are changing our canvas to a data URL, which then becomes the source of our
image. We want this to happen whenever a save button gets clicked. Here is the
button:

<input type="button" id="save" value="save" />

And the event listener:

document.getElementById("save").addEventListener("click", function () {
 let dataURL = canvas.toDataURL();
 document.getElementById("holder").src = dataURL;
});

Now whenever the save button gets clicked, it is going to update the image with the
generated data URL from the canvas. Whatever content is within the canvas element
will be turned into a base64 data image value and added to the page within an img
tag.

In the following example, there is a canvas of 200 by 200 pixels and an empty
image of the same size. When a color gets selected, a square of 100 by 100 pixels in
that color is drawn on the canvas. When the save button gets clicked, this canvas
gets converted to an image. This image can then be saved. Here is the code for the
example:

Chapter 14

[391]

<!doctype html>
<html>
<head>
 <style>
 canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <canvas id="canvas"></canvas>
 <input type="color" id="squareColor" />

 <input type="button" id="save" value="save" />
 <script>
 const canvas = document.getElementById("canvas");
 const ctx = canvas.getContext("2d");
 canvas.width = 200;
 canvas.height = 200;
 const penColor = document.getElementById("squareColor");
 penColor.addEventListener("change", function () {
 color = event.target.value;
 draw(color);
 });
 document.getElementById("save").addEventListener("click",
function () {
 let dataURL = canvas.toDataURL();
 document.getElementById("holder").src = dataURL;
 });
 function draw(color) {
 ctx.fillStyle = color;
 ctx.fillRect(70, 70, 100, 100);
 }
 </script>
</body>
</html>

HTML5, Canvas, and JavaScript

[392]

Here is what it looks like after saving the image:

Figure 14.10: Result of saving the image

Media on the page
There are special elements for media on the page. We are going to show you how to
add audio and video and how to embed YouTube on a webpage.

Adding an audio player to a page is very simple:

<!DOCTYPE html>
<html>
 <body>
 <audio controls>
 <source src="sound.ogg" type="audio/ogg">
 <source src="sound.mp3" type="audio/mpeg">
 </audio>
 </body>
</html>

Chapter 14

[393]

You specify the controls attribute if you want the user to be able to control pause
and play and the volume. If you want it to start automatically, you'll have to add the
attribute autoplay. With the source element, you specify the audio files that can be
played. The browser will choose only one and will choose the first one (from top to
bottom) that it supports.

Adding a video to a webpage is very similar to adding audio. Here's how to do it:

<video width="1024" height="576" controls>
 <source src="movie.mp4" type="video/mp4">
 <source src="movie.ogg" type="video/ogg">
</video>

Often you would want to link to YouTube instead. Here's how to do that:

<iframe
 width="1024"
 height="576"
 src="https://www.youtube.com/embed/v6VTv7czb1Y"
>
</iframe>

You will have to use the iframe element. This is a special element that allows another
webpage inside the current webpage. And you can then add the YouTube embed
link as a source. The last code after embed comes from the video URL.

The height and width attributes of the video can be changed to make the video
bigger or smaller. If you want to show it fullscreen, you can change the width and
height like this:

<iframe
 width="100%"
 height="100%"
 src="https://www.youtube.com/embed/v6VTv7czb1Y"
>
</iframe>

If you want it to be only a part of the screen, you can adjust the width and height
attributes accordingly.

You can autoplay these as well with the autoplay attribute. If you use autoplay on
more than one, none of them will autoplay to protect the visitor from getting all
that noise from the webpage. It is typically considered annoying if your video starts
making noise in the browser. Adding the attribute muted will avoid this.

HTML5, Canvas, and JavaScript

[394]

Digital accessibility in HTML
Digital accessibility is of huge importance for visually impaired people or those
unable to use a mouse. In order to use the internet with little or no vision, screen
readers are in place. This is a special piece of software that reads what is on the
screen or converts it to braille using special devices connected to the computer.
People that cannot use a mouse will often rely on speech to give the computer
instructions.

Early web applications were terrible in terms of accessibility. Luckily, WAI-ARIA
created a technical specification of how to make the internet digitally accessible.
Dynamic parts can be recognized if implemented correctly, and by adding semantics
and metadata to the HTML, it's better useable for external tooling.

Semantics might be one of the most important parts here. This comes down to using
the right HTML element for the right purpose. If something should be clicked, it is
best to make it a <button> element and not a , for example. If it is a button, it is
possible to navigate to it with the Tab key and click it using Enter.

The same goes for headers. You can create something that looks like a header using
a special class and give it a layout, but the screen readers are looking for h1, h2, and
h3. You should always use the header elements for headers. This helps the screen
readers and improves the accessibility of your website. And as a bonus, it helps you
rank higher in Google as well because bots also check out the headers to see what is
important on your site.

It is also important to use labels and link text that is descriptive. If the link part is
only Click here, that is not helpful. Something like Click here to sign up for the
summer event is much better.

Throughout this book, we have also done something wrong with our input boxes.
In order to make input fields accessible, you'll have to add a label element. This will
make it easier for screen readers to pick up on what the input box is about. So this is
generally bad practice:

<input type="text" id="address" />

Chapter 14

[395]

And this is much better, because now screen readers can read it too (and therefore
visually impaired people can understand it):

<label for="address">Address:</label>
<input type="text" id="address" />

One last one that you may know already is the alt attribute for images. If the screen
reader encounters an image, it will read the alt description. So make sure that these
are descriptive, even if the image is not important. Since there is clearly no way
to know it's not important if you cannot see the image, all you'll know is that you
cannot see some picture. Here is how to add alt text:

<img src="umbrella.jpg" width="200" height="200" alt="rainbow colored
umbrella" />

These tips are not that important for practicing and testing purposes, but they are of
great use when you are going to create professional apps. Taking accessibility into
account will make your app more accessible for everyone. And as I said, Google will
(currently) reward this good behavior by ranking you more highly and your app will
be more profitable since more people can use it!

Chapter projects

Create a Matrix effect
This exercise will create a continuous animation of text moving from top to bottom.
The final effect produced will show characters moving down the screen within the
canvas element and appearing to disappear and fade as they approach the bottom
of the screen as more new characters will be added to the canvas in their place. The
random character can be either a 0 or 1, and will be in place in the position according
to the number, which will represent the vertical position of where the character is
drawn.

HTML5, Canvas, and JavaScript

[396]

The canvas will be filled with a black background, which is going to use opacity to
create the fading effect once it's redrawn:

Figure 14.11: Matrix effect desired outcome

Take the following steps:

1. Create a simple HTML document, and in JavaScript create a canvas element
and add the getContent element as 2d.

2. Select that canvas element and set the attribute height and width to 500x400.
Prepend it to the body of your document.

3. Create an empty array named colVal and create a loop to add a number
of items into the array that will have a value of 0. The number of items
you need to add to the array can be determined by dividing the width by
ten, which should be the width between each column. The values in the
array will be the starting vertical position of the content for the fillText()
method that you will set up.

4. Create the main Matrix function to run at 50 millisecond intervals.
5. Set the fillStyle to be black with .05 opacity, so that when it layers on top

of the existing elements it will produce a fading effect.
6. Set the canvas font color to be green.
7. Using an array map, iterate all the current items in the colVal array, which

holds the vertical position for the output text.

Chapter 14

[397]

8. Within the map, set the characters to display. We want it to alternate between
0 and 1 so, using Math.random(), generate a value of either 0 or 1 for the text
output. You can use a ternary operator to do this.

9. Set the position of x using the index value multiplied by 10, which is the start
of each new letter. Using the index from the colVal array, this will create
separate columns of moving characters.

10. Create the character within the canvas using the ctx fillText() method,
setting the output character to the random 0 or 1 value, using posX for
the column x position, and posY, which is the value in the colVal array
for the item, as the position of the y axis for the output.

11. Add a condition that checks if the position of y is greater than 100 plus a
random value of 0-300. The larger the number, the longer the number will
fall on the y position. This is random so not all numbers end at the same spot.
This will create a staggered effect after the initial drop.

12. If the position of y is not past the random value and 100, increment the value
of the index item by 10. Assign this value of y back to the item in the colVal
array, which can then be used in the next iteration. This will move the letter
down 10 pixels on the canvas within the next draw round.

Countdown clock
This exercise will produce a real-time countdown clock that will display the amount
of time in days, hours, minutes, and seconds left until the date value within the input
date field. Adjusting the input date field will update the countdown clock. It will
also use local storage to capture and save the value in the input field, so if the page
is refreshed, the input field will still retain the date value and the countdown clock
can continue to count down to that date value from the input field. You can use the
following HTML template:

<!doctype html>
<html>
<head>
 <title>JavaScript</title>
 <style>
 .clock {
 background-color: blue;
 width: 400px;
 text-align: center;
 color: white;
 font-size: 1em;
 }

HTML5, Canvas, and JavaScript

[398]

 .clock>span {
 padding: 10px;
 border-radius: 10px;
 background-color: black;
 }
 .clock>span>span {
 padding: 5px;
 border-radius: 10px;
 background-color: red;
 }
 input {
 padding: 15px;
 margin: 20px;
 font-size: 1.5em;
 }
 </style>
</head>
<body>
 <div>
 <input type="date" name="endDate">
 <div class="clock"> 0 Days</
span> 0
 Hours 0
Minutes 0
 Seconds
 </div>
 </div>
 <script>

 </script>
</body>
</html>

We have created page elements including input with a type of date, a main clock
container, and added spans for days, hours, minutes, and seconds. They have been
labeled and CSS applied as needed.

You can take the following steps:

1. Select the page elements as JavaScript objects, as well as selecting the main
clock output area as the value of a JavaScript object.

Chapter 14

[399]

2. Create variables for the timeInterval and a global Boolean value that can be
used to stop the clock timer.

3. Check the local storage if there is an item for countdown already set. If there
is, use that value.

4. Create a condition and function to start the clock as the saved value and set
the input field date value to the local storage saved value.

5. Add an event listener to invoke a function if the value of the input field is
changed. Clear the interval if it has changed and set the new endDate value in
the local storage.

6. Start the clock with the start clock function from that new endDate input
value.

7. Create a function to start the clock that is used to start the counter. Within
that function, you can create a function that updates the counter and outputs
the new clock time values into the page clock container area.

8. Within this function, check if timeLeft is less than the counter time. Create a
separate function to handle this. If it's less, stop the timer.

9. If the time left is more and has a value within the object, then output the
object by property names and match the property names you use in the time
left function object to the class names you use in your webpage elements
so they match and you can save time rewriting them. Loop through all the
object values and assign the values within the innerHTML page element.

10. In the time left function, get the current date. Using Date.parse(), parse the
date and calculate the total milliseconds left until the counter ends. Return
the values of the total days, hours, minutes, and seconds as a response object
to use in the update function.

11. If the counter is false and has passed the end time, then clear the interval.
If the counter is still valid, set the interval to run the update function every
1,000 milliseconds.

Online paint app
Create a drawing application where the user can draw using their mouse in the
canvas element. When the user is within the canvas element and clicks down on
the mouse button, holding the button down will add lines, producing a drawing
effect within the canvas element. The color and width of the drawing pencil can be
changed dynamically for more functionality. In addition, this app will include a
button to save and download the image from the canvas element, as well as clearing
the current canvas content.

HTML5, Canvas, and JavaScript

[400]

You can use the following template and add the JavaScript code:

<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <canvas id="canvas" width="600" height="400"></canvas>
 <div>
 <button class="save">Save</button>
 <button class="clear">clear</button>
 Color: <input type="color" value="#ffff00"
id="penColor">
 Width: <input type="range" min="1" max="20" value="10"
id="penWidth">
 </div>
 <div class="output"></div>
 <script>

 </script>
</body>
</html>

We have created a button to save and a button to clear, an input for color using the
HTML5 color type, and the range type to get a numeric value for the pen width. We
have also added page elements for the canvas and an output area.

Take the following steps:

1. Using JavaScript, select all the page elements as JavaScript objects and set up
the canvas element to draw into.

2. Set a variable to track the location of the pen.
3. On the canvas, add an event listener to track mouse movement. Update

the pen position to the lastX and lastY positions, and then set the location
position to clientX and clientY. Create a function to draw at the pen
position and invoke the draw function.

Chapter 14

[401]

4. For mousedown, set draw to true, and for mouseup and mouseout, set draw to
false.

5. Within the draw function, begin the move path at the pen location values and
set the stroke style to the pen color and stroke width to the pen width. These
can be changed by clicking the inputs and updating their HTML values. Add
the stroke and close the drawing path.

6. Add an event listener to the clear button. If clicked, create a function that
confirms that the user wants to remove and clear the drawing, and then if
true, invoke clearRect() to clear the canvas contents.

7. Add another event listener to save the image. When clicked, it should invoke
a function that gets the canvas object using toDataURL as base64 image data.
You can log it into the console to see what it looks like.

8. Create an img element and prepend it to the output area element. Set the src
path to the dataURL value.

9. To set a download of the image, create an anchor tag, append it to anywhere
within the HTML page elements, and create a filename. You can generate
a unique filename with Math.random(). Set the hyperlink to the download
attribute and the href path to the dataURL path, and trigger a click with the
click() method. Once clicked, remove the link element.

Self-check quiz
1. Which statements below are the correct way to prepare to draw?

const canvas = document.getElementById("canvas");
const ctx = canvas.getContext("2d");
var canvas = document.getElementById("canvas");
var ctx = getContext("canvas");
var ctx = canvas.getContext("canvas");

2. What will the following code do?
<canvas id="canvas"></canvas>
<script>
 var canvas = document.getElementById("canvas");
 var ctx = canvas.getContext("2d");
 canvas.height = 600;
 canvas.width = 500;
 ctx.beginPath();
 ctx.fillStyle = "red";

HTML5, Canvas, and JavaScript

[402]

 ctx.arc(50, 50, 50, 0, Math.PI * 2);
 ctx.fill();
 ctx.closePath();
</script>

• Nothing, the code has errors
• Draws a red square
• Draws a red circle
• Draws half a circle

3. What are all three methods required to draw a line within the canvas
element, and in what order?

Summary
We have discussed a lot of great additions to our JavaScript toolbox using HTML5 in
this chapter. These new skills will really enhance our capabilities to build interactive
web apps. We started off with the local file reader, which enabled us to upload and
read files using several methods, such as the readAsText() method. Then we saw
how to get the GeoLocation of a user. This can be great to personalize suggestions,
for example, for restaurants or parking spots.

The canvas was yet another amazing addition to what we can do with web page(s).
Canvases allow us to draw, write text, add images (by drawing and uploading), and
create complete animations. This all can be done using the methods on the canvas.

We then had a look at media on the page and how to add audio and video. Finally,
we discussed the topic of digital accessibility and how to make sure your website is
accessible for everybody, with and without a screen reader.

And at this point, we can say, you did it! You've worked your way through so many
basic and advanced web development topics. In the final chapter, we are going to
be exploring the next steps for you to take your skills to the next level beyond pure
JavaScript, which is what this book has focused on.

[403]

15
Next Steps

You've come very far already! At this point, you should have the building blocks of
JavaScript down. And you are able to create apps, write clever scripts, and read a lot
of code. This is a great foundation for some serious next steps. In this chapter, we
will be taking what you've learned to the next step by practicing and figuring out
what interests you out of the endless possibilities that JavaScript offers.

We won't go into too much detail about all the topics here. The details will be
outdated soon and there is an endless supply of very well-crafted tutorials and
information on the internet for each one of them. Chances are that by the time you
are reading this, the frameworks and libraries we are recommending are hopelessly
old. The good news is that the likelihood that the next big thing will use the same
concepts is huge.

This chapter will serve as a starting point for your next steps with JavaScript. We
will cover the following topics:

• Libraries and frameworks
• Learning the backend
• Next steps

Note: exercise, project and self-check quiz answers can be found in
the Appendix.

Next Steps

[404]

Libraries and frameworks
Let's start with libraries and frameworks. Libraries are basically pre-programmed
JavaScript modules that you can use to speed up your development process. They
typically do one specific thing for you. Frameworks are very similar, they are also
pre-programmed, but instead of doing only one thing for you, they arrange a whole
list of things. This is why it is called a framework, it really is providing you a solid
place to start from and usually demands a certain structure for your files in order to
do so. A framework is often a bundle of libraries that provide an all-in-one solution.
Or at least a many-in-one. You'll eventually even find yourself using external
libraries on top of the frameworks.

To give a non-code example, if we started building a car, we could do so from
scratch and make every single piece of this car ourselves. This is pretty much what
we've been doing in this book so far. With libraries, we get ready-made parts—in
our car example, we could get fully built chairs that we only would have to install
onto the car frame we've built. If we used a framework to make a car, we would get
the skeleton of the car itself, with all the essential parts in it already, and it would
probably be capable of driving already. We would only need to focus on customizing
the car and making sure it includes all the special things for our wants and needs.
While doing that, we would have to keep in mind the skeleton of the car we already
have and continue in that style.

As you can imagine, we would be done with our car project a lot faster using
libraries and frameworks. Also, we would run into less trouble using libraries and
frameworks, since the pre-made parts would have been well tested by many others
already. If we were to make our own car chairs from scratch, chances are that after
a year of driving they are no longer comfortable, whereas the standard solution has
been thoroughly checked already.

So, libraries and frameworks don't just speed up the process, they also provide you
with a more stable and better-tested solution. Are there no downsides? Well, of
course there are. The most important one is probably flexibility, as you will have to
stick to the structure of the framework you are using. To some extent, this could also
be an advantage because it usually requires a well-structured coding style from you,
which will improve the code quality.

Another downside is that you'll have to keep on updating your app whenever the
framework or library you are using is updated. This is very important, especially
when the updates are fixes to security issues. On the one hand, frameworks and
libraries are very reliable, but because they're so commonly used, it is not unusual
for hackers to find weaknesses. If they find one, this will give them opportunities
on many apps, including your own. On the other hand, your own code is probably
weaker than an average framework, by a lot.

Chapter 15

[405]

However, in many cases, hacking your custom app might be too costly. For example,
when you just have a hobby project online, you are probably not going to pay a
huge amount of ransom money to hackers and the data in your app also won't be
worth the hackers' effort. Whereas a script that just tries to exploit a weakness of
an often-used framework for apps on a random number of websites is common. To
minimize the risk, update your dependencies often and keep an eye out for reported
weaknesses by the owner of your library or framework.

Libraries
Technically, we cannot do anything more with frameworks and libraries than we
can do without them. That is, if you leave time out of the equation. Frameworks and
libraries allow us to develop to a higher quality a lot faster, and this is why they are
so popular.

We will be discussing a few of the most popular libraries here. This is definitely not
an exclusive list, and it is also very dynamic, so other libraries or frameworks might
be more popular in a year's time. This is why we are not going to be covering full
tutorials and how to get started here. We will just explain the basic principles and
show some code snippets. However, this is still a solid foundation for the next big
step in your development career.

Many of the libraries can be included in a page by adding a script tag to the head of
the HTML, like this:

<script src="https://linktolibrary.com/librarycode.js"></script>

We will start by discussing a few common libraries.

jQuery
jQuery is arguably the most famous JavaScript library. It was great to use in the
past, when it would be compiled into the latest version of JavaScript for the specific
browser. Nowadays, it is just a different way of writing some of the things we have
seen in the book. You can recognize jQuery easily by the amount of dollar signs in
the code. You can also tell if a website is using jQuery if you type $ or jQuery into
the console of the website, and it returns the jQuery object. The jQuery library is
mainly focused on selecting HTML elements from the DOM and interacting with
and manipulating them. It roughly looks like this:

$(selector).action();

Next Steps

[406]

With the dollar sign you indicate that you want to start jQuery, and with the selector
you can select the element in HTML. The signs here are a bit like CSS:

• Just a simple string value targets an HTML element: $("p")
• A period before a word or phrase indicates you want to select all elements

with a certain class: $(".special")
• A hashtag targets an element with a certain ID: $("#unique")
• You can also use any other CSS selector, including the more complicated

chained ones

Here is an example where the jQuery library is imported in the script element
starting on line 3:

<html>
 <head>
 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/
jquery.min.js"></script>
 </head>
 <body>
 <p>Let's play a game!</p>
 <p>Of hide and seek...</p>
 <p class="easy">I'm easy to find!</p>
 <button id="hidebutton">Great idea</button>
 <button id="revealbutton">Found you!</button>
 <script>
 $(document).ready(function () {
 $("#hidebutton").click(function () {
 $("p").hide();
 });
 $("#revealbutton").click(function () {
 $(".easy").show();
 });
 });
 </script>
 </body>
</html>

Chapter 15

[407]

This is what the page looks like:

Figure 15.1: Page with a simple jQuery script

When you click the Great idea button, all the paragraphs will be hidden. This is
done inside the event that's been added using jQuery. First, we selected the button
with the ID hidebutton, next we call the click function on it, which specifies what
will happen on click. In that function, we state that we'll select all p elements and
hide them. hide is a special jQuery function that adds the display:none style to the
HTML element.

So, after clicking, all the paragraphs are gone. When we click on Found you!, only
one comes back, the last one reading I'm easy to find. This is because when the
button with the ID revealbutton gets clicked, it selects all elements with class easy
and removes the display:none from the style using the jQuery show function.

This is what jQuery really comes down to:

• Getting the selectors down
• Knowing some extra or differently named functions to manipulate the

elements

You can use jQuery in your code, but this won't expand your possibilities to do more
with JavaScript. It will just allow you to do the same thing with fewer characters of
code. The reason jQuery was so popular is that it added a lot of value when browsers
were less standardized, in which case using jQuery would actually provide the
solution to standardizing JavaScript across multiple browsers. This is of little use
nowadays, and if you are going to write new code, you would be better just using
JavaScript. However, whenever you are working on older code, it is very likely you'll
run into jQuery so knowing how it works will definitely help you in these cases.

Next Steps

[408]

D3
D3 stands for three Ds: data-driven documents. It is a JavaScript library that helps
manipulate documents based on data and it can be used to visualize data using
HTML, SVG, and CSS. It comes in very handy for dashboards that need to contain
any sort of data representation.

You can make pretty much any kind of graph you could want with a lot of features
using D3. It can look rather intimidating, because all the settings for the graph figure
need to be set. Diving into it and breaking it up in pieces will ensure you'll overcome
any hurdles. Below you'll find a very basic example to add three spheres to an SVG
using D3:

<!DOCTYPE html>
<html>
<head>
 <script src="https://d3js.org/d3.v7.min.js"></script>
 <style>
 svg {
 background-color: lightgrey;
 }
 </style>
</head>
<body>
 <svg id="drawing-area" height=100 width=500></svg>
 <script>
 let svg = d3.select("#drawing-area");
 svg.append("circle")
 .attr("cx", 100).attr("cy", 50).attr("r", 20).style("fill",
"pink");
 svg.append("circle")
 .attr("cx", 200).attr("cy", 20).attr("r", 20).style("fill",
"black");
 svg.append("circle")
 .attr("cx", 300).attr("cy", 70).attr("r", 20).style("fill",
"grey");

At the time of writing, you can find the jQuery docs here:
https://api.jquery.com/.

https://api.jquery.com/

Chapter 15

[409]

 </script>
</body>

</html>

The D3 library gets imported in the first script tag. And the svg variable gets created
using the d3.select method on the svg with ID drawing-area.

We are not doing the possibilities of D3 any justice—in this case, this isn't a lot
more useful than just doing this with a canvas. However, you can make beautiful
animations of the data, such as a zoom effect, a sortable bar graph, a spin effect on
a sphere, and so much more. That code would take up multiple pages of the book
though.

Underscore
Underscore is a JavaScript library that can be summarized as a toolkit for functional
programming. Functional programming can be considered a programming
paradigm, it revolves around using descriptive functions in a sequence rather than
separate examples. Object-oriented programming (OOP) is also a programming
paradigm, which is all about objects and their state, and the data can be encapsulated
and hidden from the outside code. In functional programming the functions are very
important, but there is less state to be concerned about. These functions do the same
thing with different arguments all the time, and they can be easily chained.

The Underscore library offers a lot of functions for everyday programming, such as
map, filter, invoke, and functions for testing. Here is a little code snippet showing
some Underscore, which makes an alert pop-up box for all the items in the array—in
this case, it is making a pop-up for 1, 2, and 3:

<!DOCTYPE html>
<html>

<head>
 <script src="https://cdn.jsdelivr.net/npm/underscore@1.13.1/
underscore-umd-min.js"></script>

At the time of writing, you can find the full documentation here:
https://devdocs.io/d3~4/.

https://devdocs.io/d3~4/

Next Steps

[410]

</head>

<body>
 <script>
 _.each([1, 2, 3], alert);
 </script>
</body>

</html>

There are many other functions for filtering, grouping elements, transforming
elements, getting a random value, getting the current time, and a lot more.

This snippet probably explains the name as well, since we access Underscore
functions using an underscore. You will have to install Underscore first though, else
the interpreter won't understand the syntax.

React
React is the last frontend library we are going to discuss. If you would rather say
React is a framework you are not completely wrong, but not right either. The reason
that we consider React a library is that you'll need to use some other libraries to get
to the point where it feels like a framework.

React is used to build beautiful and dynamic user interfaces. It splits up pages into
different components and the data gets sent and updated between components as
it changes. Here is a very basic example that only scratches the very surface of what
React can do. This HTML will give this sentence on the page: Hi Emile, what's up?:

<div id="root"></div>

It will do this when the following JavaScript is associated with it:

ReactDOM.render(
 <p> Hi Emile, what's up?</p>,
 document.getElementById('root');
);

At the time of writing, you can find the full documentation here:
https://devdocs.io/underscore/.

https://devdocs.io/underscore/

Chapter 15

[411]

This will only work when the React library is available. And it will render the DOM,
replacing the innerHTML of the div with the first argument of the render function.
We can do this by adding React in a script element in the header and not installing
anything on our system. The completed script looks like this:

<!DOCTYPE html>
<html>

<head>
 <script src="https://unpkg.com/react@17/umd/react.development.js"
crossorigin></script>
 <script src="https://unpkg.com/react-dom@17/umd/react-dom.
development.js" crossorigin></script>
</head>

<body>
 <div id="root"></div>
 <script>
 let p = React.createElement("p", null, "Hi Emile, what's up?");
 ReactDOM.render(
 p,
 document.getElementById("root");
);
 </script>
</body>

</html>

This will write Hi Emile, what's up? to the page using React elements created
manually in the script tag. This is not something you should be doing for large
projects though. It is way more valuable to set up React and everything you need
using a package manager such as Node Package Manager (NPM). This will allow
you to easily manage all the dependencies and keep your code organized.

At the time of writing, more can be found here: https://
reactjs.org/docs/getting-started.html.

https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html

Next Steps

[412]

Frameworks
The frameworks are more complex and usually you'll have to install them on your
computer. How to do this can be found in the online documentation of the specific
framework. And whenever you are done coding and you want to run your code,
you'll have to run a command that will process your code into something the
browser will understand. We are "serving" the application when we do this.

Vue.js
Vue.js is a lightweight JavaScript framework. It can be used to build user interfaces
and single-page applications (SPAs). The way user interfaces are written with
Vue.js can be hard to get your head around the first time you encounter it. Have a
look at this code sample:

<!DOCTYPE html>
<html>
 <script src="https://cdn.jsdelivr.net/npm/vue"></script>

 <body>
 <div id="app">
 <p v-if="!hide">
 Let's play hide and seek.

 Go to the console and type:

 obj._data.hide = true

 </p>
 </div>

 <script>
 let obj = new Vue({
 el: "#app",
 data: {
 hide: false,
 },
 });
 </script>
 </body>
</html>

This is a simple HTML page, importing a JavaScript link from Vue. There is
something weird going on in the HTML of the <p> tag: there is a v-if element. This
element will only be displayed when the condition in that v-if is true.

Chapter 15

[413]

In this case, it is looking at the hide property of our data object in our Vue instance.
If you change the value of this hide to true, the negated hide statement will become
false, and the element will disappear. This is something that we could have done
without Vue as well, but we would then have specified a JavaScript event for the
change of the value and used JavaScript to edit the CSS to hide the paragraph.

You can even see HTML elements that are new to you. That is because these are
not regular HTML elements, but rather from Vue, which lets you define your own
elements. You can run into HTML that looks like this:

<div id="custom-component">
 <maaike></maaike>
</div>

And when you open the webpage associated with it, it shows:

Maaike says: good job!

This is not because HTML knows how to do that. This is because there is a snippet
that defines the maaike component. Here is the snippet:

<script>
 Vue.component("maaike", {
 template: "<p>Maaike says: good job!</p>",
 });

 new Vue({ el: "#app" });
</script>

In the preceding code, a new Vue component is created, and it can actually hold data
and have a function too, but this one is very basic and just to illustrate we can add
HTML templates in the template property. There is a paragraph specified. When the
webpage gets loaded, the <maaike> component will be replaced with whatever is in
the template.

The content of one page can come from many files. Usually these components all
have their own file. There is a lot more official Vue tooling that you will get to
know once you dive into Vue.js. It is actually a great framework for beginners with
frameworks, as it is rather clear what is going on and is a great starting point for
comprehending frameworks in general.

Next Steps

[414]

Angular
Angular is a framework that originates from and is (currently) maintained by
Google. Angular is a lot heavier than Vue.js, but it can be considered a complete
package. This means that Angular takes up more disk space, and more disk space
usually means it is slower to compile and install. Looking at Angular code isn't
really that much different from Vue.js. However, Angular uses TypeScript instead
of JavaScript. TypeScript is a superset of JavaScript and gets transpiled to JavaScript,
but it is stricter and has a different syntax as well.

Angular can be recognized by the ng attributes in the HTML. We are not going to
show a full example, but here is the HTML that will show all the tasks on a to-do list
(when the code around it is set correctly):

 <li ng-repeat="task in tasks">
 {{task}}Done

The ng-repeat attribute is specifying the repeat action that for every task on the task
list, it should create a element. And task can be used as a variable inside
as well, as indicated by {{ task }}.

There's one more Angular-specific thing going on, ng-click, which tells Angular
what to do when an element gets clicked. This is similar to the onclick event of
JavaScript, but it can now be dynamically binded. This means that when writing
the code, you don't need to know about onclick yet. Clearly, you can achieve the
same thing in JavaScript by specifying events that will lead to changes of the onclick
attribute (and the complete element if necessary), but this is a lot more code that
needs to be written. This goes for anything in Angular: it can be done with just
JavaScript but it is a lot more work (and that might actually be an understatement,
depending on the complexity of the situation).

At the time of writing, you can find the full Vue docs here:
https://v3.vuejs.org/guide/introduction.html.

https://v3.vuejs.org/guide/introduction.html

Chapter 15

[415]

Learning to work with libraries and frameworks such as React, Angular, or Vue is
a very logical and even must-have next step if you seek to be a frontend developer.
In the authors' view, the difficulty of these options doesn't really differ that much.
Which one is the best choice depends on the place you want to work and the region
that you are in, because there are regional preferences for these frameworks and
libraries.

Learning the backend
So far, we have only been dealing with the frontend. The frontend is the part that is
running on the client side, which could be any device that the user is using, such as
a phone, laptop, or tablet. In order for websites to do interesting stuff, we also need
a backend. For example, if you want to log on to a website, this website somehow
needs to know whether this user exists.

This is the job of the server-side code, the backend. This is code that is running not
on the device of the user, but on some sort of server elsewhere, which is often owned
or leased by the company hosting the website. Hosting the website usually means
that they make it available to the world wide web by placing it on a server that can
take outside requests via a URL.

The code on the server does many things, all related to deeper logic and data. For
example, an e-commerce store has a bunch of items in the shop that come from a
database. The server gets the items from the database, parsing the HTML template
and sending the HTML, CSS, and JavaScript over to the client.

The same goes for logging in: when you enter your username and password on a
website and you click on login, the code on the server gets triggered. This code is
going to verify the details you entered with those in the database. If you have the
correct details, it will send you back the page of your portal for logged-in users.
And if you have entered incorrect details, it will send back the error to the client.

In this section, we will cover the basics of communication between the frontend
and backend, and we will show you how you can use JavaScript to write backend
code as well using Node.js.

At the time of writing, you can find the full docs here: https://
angular.io/docs.

https://angular.io/docs
https://angular.io/docs

Next Steps

[416]

APIs
An API (Application Programming Interface) is essentially an interface for code,
written with more code. A request can be made to an API using (for example) a URL.
This will trigger a certain piece of code and this piece of code will give a certain
response back.

This is all very abstract, so let's use an example. If we had a website for a hotel, it
would make sense for people to be able to make bookings online. This would require
us to have some sort of API. Whenever a user has filled out all the fields and clicks
on Submit booking, the API will get triggered by calling the URL and sending all
the data that the user has entered to that endpoint (a specific URL), for example:
www.api.hotelname.com/rooms/book. This API will process and validate our data and
when everything is fine, it will store the room booking in our database and probably
send a confirmation mail to our guest.

Whenever one of the hotel clerks goes to check out the reservations, another API call
will be made using one of the endpoints. It could be an endpoint that looks like this
for example: www.api.hotelname.com/reservations. This would first go ahead and
check whether our employee is logged in with the right role, and if so, it will fetch all
the reservations for the selected date range from the database and send the page with
the results back to our employee, who can then see all the bookings. So APIs are the
connection points between the logic, database, and frontend.

APIs work with Hypertext Transfer Protocol (HTTP) calls. HTTP is just a protocol
for communication between two parties: a client and a server, or a server and
another server (in which the requesting server acts like the client). This means that
it has to stick to certain conventions and rules that the other party expects, and the
other party will respond in a certain way. For example, this means using a specific
format to specify headers, using GET methods for getting information, using POST
methods for creating new information on the server, and using PUT methods to
change information on the server.

You will see how to consume these APIs in the AJAX section. You can also write
your own APIs, and the ultimate basics of how to do this can be found in the Node.js
section.

There can be more done with APIs, for example, your computer
and printer communicate via an API as well. However, this is not
too relevant from a JavaScript point of view.

Chapter 15

[417]

AJAX
AJAX stands for Asynchronous JavaScript and XML, which is a misnomer, because
nowadays it is more common to use JSON instead of XML. We use it to make calls
from the frontend to the backend, without refreshing the page (asynchronously).
AJAX is not a programming language or a library, it is a combination of the built-in
XMLHttpRequest object in the browser and the JavaScript language.

You probably won't be using plain AJAX in your day-to-day life as a frontend
developer nowadays, but it is being used beneath the surface so it won't hurt to
know how it works. Here is an example of calling the backend using AJAX:

let xhttp = new XMLHttpRequest();
let url = "some valid url";
xhttp.load = function () {
 if (this.status == 200 && this.readyState == 4) {
 document.getElementById("content").innerHTML = this.responseText;
 }
};
xhttp.open("GET", url, true);
xhttp.send();

This is not a working example, because there is no valid URL, but it demonstrates
how AJAX works. It sets up what it needs to do when the request has been loaded,
in this case, replacing the HTML inside the element with ID content with whatever
the link returns. This could be a link to a file, or to some API that calls a database.
It can give different responses when there is other (or no) data in the database. This
response is in JSON, but it could also be in XML. This depends on how the server
was coded.

More common now is the use of the Fetch API for AJAX requests. This is similar to
what we can do with XMLHttpRequest but it provides a more flexible and powerful
set of features. For example, in the following code we get the data from the URL,
convert it to JSON with the json() method, and output it to the console:

let url = "some valid url";
fetch(url)
 .then(response => response.json())
 .then(data => console.log(data));

The Fetch API works with promises, which should look familiar at this point. So
after the promise is resolved, a new one gets created with then, and when that one is
resolved, the next then gets executed.

Next Steps

[418]

Practice exercise 15.1
Create a JSON file and using fetch, return the results as a usable object into your
JavaScript code:

1. Create a JSON object and save it in a file called list.json.
2. Using JavaScript, assign the filename and path to a variable named url.
3. Using fetch, make the request to the file URL. Return the results as JSON.
4. Once the response object is ready, iterate through the data and output the

results into the console of each item in the JSON file.

Node.js
We can write APIs in JavaScript using Node.js. Node.js is a very clever runtime
environment that has taken the Google JavaScript engine, expanded it, and made it
possible to run JavaScript on servers, interacting with the filesystem protocol and
HTTP using JavaScript. Because of this, we can use JavaScript for the backend. This
means that you can write both the backend and the frontend with only one language
(along with HTML and CSS). Without Node.js, you would have to use another
language such as PHP, Java, or C# for the backend.

In order to run Node.js, you first have to set it up and then run the node nameOfFile.
js command. You can find out how to set it up on your system in the official Node.js
documentation. Often it requires downloading and installing something, and then
you are done.

Here is an example of some code that will receive HTTP calls that can be written for
Node.js:

At the time of writing, more information can be found here:
https://developer.mozilla.org/en-US/docs/Web/Guide/
AJAX/Getting_Started.

At the time of writing, the download instructions are accessible at
https://nodejs.org/en/download/.

https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX/Getting_Started
https://nodejs.org/en/download/

Chapter 15

[419]

const http = require("http");

http.createServer(function(req, res){
 res.writeHead(200, {"Content-Type": "text/html"}); //header status
 let name = "Rob";
 res.write(`Finally, hello ${name}`); //body
 res.end();
}).listen(8080); //listen to port 8080

console.log("Listening on port 8080... ");

We start by importing the http module. This is an external code file that needs to be
imported in order to run. The http module comes with Node.js, but other modules
might need to be installed. You will use a package manager for this, such as NPM,
which will help to install all the dependencies and be able to manage all the different
versions of the external modules.

The code above sets up a server that is listening to port 8080, and whenever it
gets accessed, it will return Finally, hello Rob. We create the server with the
createServer method on the imported http module. We then say what needs to
happen for a call to our server. We respond with a 200 status (indicating "OK") and
write Finally, hello Rob to the response. We then specify the default port 8080 as
the listening port.

This example uses the built-in http module for Node.js, which is very powerful for
creating APIs. This is definitely something that's worth having some experience with.
Being able to write your own APIs will enable you to write full applications yourself.
This gets even easier when we add Express to the mix.

Using the Express Node.js framework
Node.js is not a framework, nor a library. It is a runtime environment. This means
that it can run and interpret the JavaScript code written. There are frameworks for
Node.js and currently Express is the most popular one.

Here is a very basic Express application—again, you will have to set up Node.js first,
then add the Express module (if you are using NPM, npm install express will do)
and run it using the node nameOfRootFile.js command:

const express = require('express');
const app = express();

app.get('/', (request, response) => {

Next Steps

[420]

 response.send('Hello Express!');
});

app.listen(3000, () => {
 console.log('Express app at http://localhost:3000');
});

After running this and going to localhost:3000 (assuming you are running it on
localhost), you will get the message Hello Express! in your browser. In the terminal
where you are running your Node app, it will print the console log message after
loading.

Next steps
You have learned a lot about JavaScript in this book and with this chapter you
should have an idea of possible next steps you can take. This chapter hasn't taught
you all of these topics in depth, as entire books could be (and have been) written
about each of them, but you should have a good idea of where to look for your next
steps and what to consider while deciding which next step to take.

The best way to learn is by doing. So we highly recommend you just come up with a
fun project idea and go ahead and try to make it. Alternatively, with this knowledge,
you may feel ready for an entry-level JavaScript position! You can also do tutorials
online or even work in a project team as a junior, using freelance platforms such
as Upwork or Fiverr to get a project. These are hard to find though, and we can
imagine that you'll learn a framework or get a bit more experience with Node.js first.
However, this is often possible on the job if you can show your skills and potential in
the hiring process.

You can find more in the Node.js documentation, which at the time
of writing is at the following address: https://nodejs.org/en/
docs/.

For the Express module, you can go to https://expressjs.com/
en/5x/api.html.

https://nodejs.org/en/docs/
https://nodejs.org/en/docs/
https://expressjs.com/en/5x/api.html
https://expressjs.com/en/5x/api.html

Chapter 15

[421]

Chapter projects

Working with JSON
Create a JSON file locally, connect to the JSON and data, and output the data from
the JSON file into your console:

1. Create a file with the extension JSON name it people.json.
2. Within people.json create an array that contains multiple objects. Each item

in the array should be an object that has the same structure, using first,
last, and topic as the property names. Make sure you use double quotes
around the property names and values as this is the proper JSON syntax.

3. Add three or more entries into the array using the same object structure for
each item.

4. Create an HTML file and add a JavaScript file. Within the JavaScript file use
people.json as the URL. Using fetch connect to the URL and retrieve the
data. Since this is a JSON-formatted file, once you get the response data it can
be formatted into JSON using the .json() method in fetch.

5. Output the full contents of the data into the console.
6. Using foreach, loop through the items in the data and output the values into

the console. You can use a template literal and output each value.

List-making project
Create a list that saves to local storage so even if the page is refreshed, the data will
persist within the browser. If the local storage is empty on the first load of the page,
set up a JSON file that will be loaded to the local storage and saved as a default list to
start the list:

1. Set up an HTML file, adding a div to output the list results to, and an input
field with a button that can be clicked.

2. Using JavaScript, add the page elements as objects that can be used within
the code.

Next Steps

[422]

3. Create your default JSON file (which can be empty) and add the path to the
file into your JavaScript code using a variable called url.

4. Add an event listener to the button element that will run a function called
addToList().

5. In addToList(), check if the value of the input field has a length of 3 or
more. If it does then create an object with a name and the value of the input
field. Create a global variable named myList to hold the list, and within
addToList() push the new object data into myList.

6. Create a function called maker(), which will create the page element and add
text into the element, appending it to the output element. Invoke maker() to
add the new item within the addToList() function.

7. Also, save the item to local storage so that the visual content of myList will
be synced with the local storage saved value. To do this, create a function
called savetoStorage() and invoke it every time you update the myList in
the script.

8. Within the savetoStorage() function, set the value of myList into
localStorage using setItem. You will need to convert myList into a string
value to save it into localStorage.

9. Add to the code getItem() to retrieve a value of myList from localStorage.
Set up a global variable for the myList array.

10. Add an event listener to listen for DOMContentLoaded. Within that function,
check if the localstorage loaded a value. If it did then get myList from local
storage and convert it from a string to a JavaScript object. Clear the output
element contents. Loop through the items in myList and add them to the
page with the maker() function created earlier.

11. If localStorage does not have content, load the JSON file with the default
values using fetch. Once the data is loaded, assign it to the global myList
value. Loop through the items in myList and using maker(), output them to
the page. Don't forget to invoke savetoStorage() after so that the storage will
contain the same list items as are visible on the page.

Self-check quiz
1. What are JavaScript libraries and frameworks?
2. How can you tell if a webpage is using the jQuery library?
3. Which library contains a lot of functionality for manipulating data?
4. When Node.js is installed, how can you run a Node.js file?

Chapter 15

[423]

Summary
In this chapter, we have explored a few of the possibilities to continue your
JavaScript journey and keep on improving yourself. We started off by discussing
the frontend and what libraries and frameworks are. Libraries and frameworks are
both pre-made code that you can use in your project, but libraries typically solve one
problem while frameworks provide a standard solution that usually controls the way
you structure your application and will come with some limitations. On the other
hand, frameworks are great fits for very many things you might want to do with
your web apps.

We then moved on to looking at the backend. The backend is the code that runs on
the server and we can write this code in JavaScript when we use Node.js. Node.js is
a runtime engine that can process JavaScript and has some additional features for
JavaScript that we don't have when using JavaScript in the browser.

And that's it. You have a very solid understanding of JavaScript at this point. You
have seen all the major building blocks, and had a lot of practice with smaller
exercises and bigger projects. There are a few things for certain: you'll never be done
with learning as a JavaScript programmer, and you will keep on amazing yourself
with the things you can make as you keep on progressing.

Don't forget to have fun!

[425]

Appendix – Practice
Exercise, Project, and Self-

Check Quiz Answers

Chapter 1, Getting Started with
JavaScript

Practice exercises

Practice exercise 1.1
4 + 10
14

console.log("Laurence");
Laurence
undefined

Practice exercise 1.2
<!DOCTYPE html>
<html>

<head>
 <title>Tester</title>
</head>

<body>

Appendix

[426]

 <script>
 console.log("hello world");
 </script>
</body>

</html>

Practice exercise 1.3
<!DOCTYPE html>
<html>

<head>
 <title>Tester</title>
</head>

<body>
 <script src="app.js"></script>
</body>

</html>

Practice exercise 1.4
let a = 10; // assign a value of 10 to variable a
console.log(a); // This will output 10 into the console
/*
This is a multi-line
Comment
*/

Projects

Creating an HTML file and a linked JavaScript file
<!doctype html>
<html>
 <head>
 <title>JS Tester</title>
 </head>

Practice Exercise, Project, and Self-Check Quiz Answers

[427]

 <body>
 <script src="myJS.js"></script>
 </body>
</html>

// console.log("Laurence");
/*
This is my comment
Laurence Svekis
*/

Self-check quiz
1. <script src="myJS.js"></script>.
2. No.
3. By opening and closing it with /* and */.
4. Comment out the line with //.

Chapter 2, JavaScript Essentials

Practice exercises

Practice exercise 2.1
console.log(typeof(str1));
console.log(typeof(str2));
console.log(typeof(val1));
console.log(typeof(val2));
console.log(typeof(myNum));

Practice exercise 2.2
const myName = "Maaike";
const myAge = 29;
const coder = true;
const message = "Hello, my name is " + myName + ", I am " + myAge+"
years old and I can code JavaScript: " + coder + ".";
console.log(message);

Appendix

[428]

Practice exercise 2.3
let a = window.prompt("Value 1?");
let b = window.prompt("Value 2?");
a = Number(a);
b = Number(b);
let hypotenuseVal = ((a * a) + (b * b))**0.5;
console.log(hypotenuseVal);

Practice exercise 2.4
let a = 4;
let b = 11;
let c = 21;
a = a + b;
a = a / c;
c = c % b;
console.log(a, b, c);

Projects

Miles-to-kilometers converter
//Convert miles to kilometers.
//1 mile equals 1.60934 kilometers.
let myDistanceMiles = 130;
let myDistanceKM = myDistanceMiles * 1.60934;
console.log("The distance of " + myDistanceMiles + " miles is equal to
" + myDistanceKM + " kilometers");

BMI calculator
//1 inch = 2.54 centimetres.
//2.2046 pounds in a kilo
let inches = 72;
let pounds = 180;
let weight = pounds / 2.2046; // in kilos
let height = inches * 2.54; // height in centimetres
console.log(weight, height);
let bmi = weight/(height/100*height/100);
console.log(bmi);

Practice Exercise, Project, and Self-Check Quiz Answers

[429]

Self-check quiz
1. String
2. Number
3. Line 2
4. world

5. Hello world!

6. Whatever the user enters in
7. 71

8. 4

9. 16 and 536
10. true

false

true

true

false

Chapter 3, JavaScript Multiple Values

Practice exercises

Practice exercise 3.1
const myList = ["Milk", "Bread", "Apples"];
console.log(myList.length);
myList[1] = "Bananas";
console.log(myList);

Practice exercise 3.2
const myList = [];
myList.push("Milk", "Bread", "Apples");
myList.splice(1, 1, "Bananas", "Eggs");
const removeLast = myList.pop();
console.log(removeLast);

Appendix

[430]

myList.sort();
console.log(myList.indexOf("Milk"));
myList.splice(1, 0, "Carrots", "Lettuce");
const myList2 = ["Juice", "Pop"];
const finalList = myList.concat(myList2, myList2);
console.log(finalList.lastIndexOf("Pop"));
console.log(finalList);

Practice exercise 3.3
const myArr = [1, 2, 3];
const bigArr = [myArr, myArr, myArr];
console.log(bigArr[1][1]);
console.log(bigArr[0][1]);
console.log(bigArr[2][1]);

Practice exercise 3.4
const myCar = {
 make: "Toyota",
 model: "Camry",
 tires: 4,
 doors: 4,
 color: "blue",
 forSale: false
};

let propColor = "color";
myCar[propColor] = "red";
propColor = "forSale";
myCar[propColor] = true;
console.log(myCar.make + " " + myCar.model);
console.log(myCar.forSale);

Practice exercise 3.5
const people = {friends:[]};
const friend1 = {first: "Laurence", last: "Svekis", id: 1};
const friend2 = {first: "Jane", last: "Doe", id: 2};
const friend3 = {first: "John", last: "Doe", id: 3};
people.friends.push(friend1, friend2, friend3);
console.log(people);

Practice Exercise, Project, and Self-Check Quiz Answers

[431]

Projects

Manipulating an array
theList.pop();
theList.shift();
theList.unshift("FIRST");
theList[3] = "hello World";
theList[2] = "MIDDLE";
theList.push("LAST");
console.log(theList);

Company product catalog
const inventory = [];
const item3 = {
 name: "computer",
 model: "imac",
 cost: 1000,
 qty: 3
}
const item2 = {
 name: "phone",
 model: "android",
 cost: 500,
 qty: 11
}
const item1 = {
 name: "tablet",
 model: "ipad",
 cost: 650,
 qty: 1
}
inventory.push(item1, item2, item3);
console.log(inventory);
console.log(inventory[2].qty);

Appendix

[432]

Self-check quiz
1. Yes. You can reassign values within an array declared with const, but cannot

redeclare the array itself.
2. Length

3. The outputs are as follows:
-1
1

4. You can do the following:
const myArr = [1,3,5,6,8,9,15];
myArr.splice(1,1,4);
console.log(myArr);

5. The output is as follows:
[empty × 10, "test"]
undefined

6. The output is as follows:

undefined

Chapter 4, Logic Statements

Practice exercises

Practice exercise 4.1
const test = false;
console.log(test);
if(test){
 console.log("It's True");
}
if(!test){
 console.log("False now");
}

Practice Exercise, Project, and Self-Check Quiz Answers

[433]

Practice exercise 4.2
let age = prompt("How old are you?");
age = Number(age);
let message;
if(age >= 21){
 message = "You can enter and drink.";
}else if(age >= 19){
 message = "You can enter but not drink.";
}else{
 message = "You are not allowed in!";
}
console.log(message);

Practice exercise 4.3
const id = true;
const message = (id) ? "Allowed In" : "Denied Entry";
console.log(message);

Practice exercise 4.4
const randomNumber = Math.floor(Math.random() * 6);
let answer = "Something went wrong";
let question = prompt("Ask me anything");
switch (randomNumber) {
 case 0:
 answer = "It will work out";
 break;
 case 1:
 answer = "Maybe, maybe not";
 break;
 case 2:
 answer = "Probably not";
 break;
 case 3:
 answer = "Highly likely";
 break;
 default:

Appendix

[434]

 answer = "I don't know about that";
}
let output = "You asked me " + question + ". I think that " + answer;
console.log(output);

Practice exercise 4.5
let prize = prompt("Pick a number 0-10");
prize = Number(prize);
let output = "My Selection: ";
switch (prize){
 case 0:
 output += "Gold ";
 case 1:
 output += "Coin ";
 break;
 case 2:
 output += "Big ";
 case 3:
 output += "Box of ";
 case 4:
 output += "Silver ";
 case 5:
 output += "Bricks ";
 break;
 default:
 output += "Sorry Try Again";
}
console.log(output);

Projects

Evaluating a number game answers
let val = prompt("What number?");
val = Number(val);
let num = 100;
let message = "nothing";
if (val > num) {
 message = val + " was greater than " + num;
} else if (val === num) {

Practice Exercise, Project, and Self-Check Quiz Answers

[435]

 message = val + " was equal to " + num;
} else {
 message = val + " is less than " + num;
}
console.log(message);
console.log(message);

Friend checker game answers
let person = prompt("Enter a name");
let message;
switch (person) {
 case "John" :
 case "Larry" :
 case "Jane" :
 case "Laurence" :
 message = person + " is my friend";
 break;
 default :
 message = "I don't know " + person;
}
console.log(message);

Rock paper scissors game answers
const myArr = ["Rock", "Paper", "Scissors"];
let computer = Math.floor(Math.random() * 3);
let player = Math.floor(Math.random() * 3);
let message = "player " + myArr[player] + " vs computer " +
myArr[computer] + " ";
if (player === computer) {
 message += "it's a tie";
} else if (player > computer) {
 if (computer == 0 && player == 2) {
 message += "Computer Wins";
 } else {
 message += "Player Wins";
 }
} else {
 if (computer == 2 && player == 0) {
 message += "Player Wins";
 } else {

Appendix

[436]

 message += "Computer Wins";
 }
}
console.log(message);

Self-check quiz
1. one

2. this is the one

3. login

4. Welcome, that is a user: John

5. Wake up, it's morning

6. Result:
• true

• false

• true

• true

7. Result:

100 was LESS or Equal to 100
100 is Even

Chapter 5, Loops

Practice exercises

Practice exercise 5.1
const max = 5;
const ranNumber = Math.floor(Math.random() * max) + 1;
//console.log(ranNumber);
let correct = false;
while (!correct) {
 let guess = prompt("Guess a Number 1 - " + max);
 guess = Number(guess);
 if (guess === ranNumber) {

Practice Exercise, Project, and Self-Check Quiz Answers

[437]

 correct = true;
 console.log("You got it " + ranNumber);
 } else if (guess > ranNumber) {
 console.log("Too high");
 } else {
 console.log("Too Low");
 }
}

Practice exercise 5.2
let counter = 0;
let step = 5;
do {
 console.log(counter);
 counter += step;
}
while (counter <= 100);

Practice exercise 5.3
const myWork = [];
for (let x = 1; x < 10; x++) {
 let stat = x % 2 ? true : false;
 let temp = {
 name: `Lesson ${x}`, status: stat
 };
 myWork.push(temp);
}
console.log(myWork);

Practice exercise 5.4
const myTable = [];
const rows = 4;
const cols = 7;
let counter = 0;
for (let y = 0; y < rows; y++) {
 let tempTable = [];
 for (let x = 0; x < cols; x++) {
 counter++;

Appendix

[438]

 tempTable.push(counter);
 }
 myTable.push(tempTable);
}
console.table(myTable);

Practice exercise 5.5
const grid = [];
const cells = 64;
let counter = 0;
let row;
for (let x = 0; x < cells + 1; x++) {
 if (counter % 8 == 0) {
 if (row != undefined) {
 grid.push(row);
 }
 row = [];
 }
 counter++;
 let temp = counter;
 row.push(temp);

}
console.table(grid);

Practice Exercise, Project, and Self-Check Quiz Answers

[439]

Practice exercise 5.6
const myArray = [];
for (let x = 0; x < 10; x++) {
 myArray.push(x + 1);
}
console.log(myArray);

for (let i = 0; i < myArray.length; i++) {
 console.log(myArray[i]);
}
for (let val of myArray) {
 console.log(val);
}

Practice exercise 5.7
const obj = {
 a: 1,
 b: 2,
 c: 3
};

Appendix

[440]

for (let prop in obj) {
 console.log(prop, obj[prop]);
}
const arr = ["a", "b", "c"];
for (let w = 0; w < arr.length; w++) {
 console.log(w, arr[w]);
}

for (el in arr) {
 console.log(el, arr[el]);
}

Practice exercise 5.8
let output = "";
let skipThis = 7;
for (let i = 0; i < 10; i++) {
 if (i === skipThis) {
 continue;
 }
 output += i;
}
console.log(output);

Alternatively, the following code could be used, replacing continue with break:

let output = "";
let skipThis = 7;
for (let i = 0; i < 10; i++) {
 if (i === skipThis) {
 break;
 }
 output += i;
}

console.log(output);

Practice Exercise, Project, and Self-Check Quiz Answers

[441]

Project

Math multiplication table
const myTable = [];
const numm = 10;
for(let x=0; x<numm; x++){
 const temp = [];
 for(let y = 0; y<numm; y++){
 temp.push(x*y);
 }
 myTable.push(temp);
}

console.table(myTable);

Appendix

[442]

Self-check quiz
1. Result:

0
3
6
9

2. Result:

0
5
1
6
2
7
[1, 5, 7]

Chapter 6, Functions

Practice exercises

Practice exercise 6.1
function adder(a, b) {
return a + b;
}
const val1 = 10;
const val2 = 20;
console.log(adder(val1, val2));
console.log(adder(20, 30));

Practice exercise 6.2
const adj = ["super", "wonderful", "bad", "angry", "careful"];

function myFun() {
 const question = prompt("What is your name?");
 const nameAdj = Math.floor(Math.random() * adj.length);
 console.log(adj[nameAdj] + " " + question);

Practice Exercise, Project, and Self-Check Quiz Answers

[443]

}
myFun();

Practice exercise 6.3
const val1 = 10;
const val2 = 5;
let operat = "-";
function cal(a, b, op) {
 if (op == "-") {
 console.log(a — b);
 } else {
 console.log(a + b);
 }
}
cal(val1, val2, operat);

Practice exercise 6.4
const myArr = [];

for(let x=0; x<10; x++){
 let val1 = 5 * x;
 let val2 = x * x;
 let res = cal(val1, val2, "+");
 myArr.push(res);
}
console.log(myArr);
function cal(a, b, op) {
 if (op == "-") {
 return a - b;
 } else {
 return a + b;
 }
}

Practice exercise 6.5
let val = "1000";

(function () {
 let val = "100"; // local scope variable

Appendix

[444]

 console.log(val);
})();

let result = (function () {
 let val = "Laurence";
 return val;
})();
console.log(result);
console.log(val);

(function (val) {
 console.log(`My name is ${val}`);
})("Laurence");

Practice exercise 6.6
function calcFactorial(nr) {
 console.log(nr);
 if (nr === 0) {
 return 1;
 }
 else {
 return nr * calcFactorial(--nr);
 }
}
console.log(calcFactorial(4));

Practice exercise 6.7
let start = 10;
function loop1(val) {
 console.log(val);
 if (val < 1) {
 return;
 }
 return loop1(val - 1);
}
loop1(start);
function loop2(val) {
 console.log(val);
 if (val > 0) {

Practice Exercise, Project, and Self-Check Quiz Answers

[445]

 val--;
 return loop2(val);
 }
 return;
}
loop2(start);

Practice exercise 6.8
const test = function(val){
 console.log(val);
}
test('hello 1');

function test1(val){
 console.log(val);
}
test1("hello 2");

Projects

Create a recursive function
const main = function counter(i) {
 console.log(i);
 if (i < 10) {
 return counter(i + 1);
 }
 return;
}
main(0);

Set timeout order
const one = ()=> console.log('one');
const two = ()=> console.log('two');
const three = () =>{
 console.log('three');
 one();
 two();
}

Appendix

[446]

const four = () =>{
 console.log('four');
 setTimeout(one,0);
 three();
}
four();

Self-check quiz
1. 10

2. Hello

3. Answer:
Welcome
Laurence
My Name is Laurence

4. 19

5. 16

Chapter 7, Classes

Practice exercises

Practice exercise 7.1
class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }
}
let person1 = new Person("Maaike", "van Putten");
let person2 = new Person("Laurence", "Svekis");
console.log("hello " + person1.firstname);
console.log("hello " + person2.firstname);

Practice Exercise, Project, and Self-Check Quiz Answers

[447]

Practice exercise 7.2
class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }
 fullname(){
 return this.firstname + " " + this.lastname;
 }
}
let person1 = new Person("Maaike", "van Putten");
let person2 = new Person("Laurence", "Svekis");
console.log(person1.fullname());
console.log(person2.fullname());

Practice exercise 7.3
class Animal {
 constructor(species, sounds) {
 this.species = species;
 this.sounds = sounds;
 }
 speak() {
 console.log(this.species + " " + this.sounds);
 }
}
Animal.prototype.eat = function () {
 return this.species + " is eating";
}
let cat = new Animal("cat", "meow");
let dog = new Animal("dog", "bark");
cat.speak();
console.log(dog.eat());
console.log(dog);

Appendix

[448]

Projects

Employee tracking app
class Employee {
 constructor(first, last, years) {
 this.first = first;
 this.last = last;
 this.years = years;
 }
}
const person1 = new Employee("Laurence", "Svekis", 10);
const person2 = new Employee("Jane", "Doe", 5);
const workers = [person1, person2];

Employee.prototype.details = function(){
 return this.first + " " + this.last + " has worked here " +
 this.years + " years";
}

workers.forEach((person) => {
 console.log(person.details());
});

Menu items price calculator
class Menu {
 #offer1 = 10;
 #offer2 = 20;
 constructor(val1, val2) {
 this.val1 = val1;
 this.val2 = val2;
 }
 calTotal(){
 return (this.val1 * this.#offer1) + (this.val2 * this.#offer2);
 }
 get total(){
 return this.calTotal();
 }
}

Practice Exercise, Project, and Self-Check Quiz Answers

[449]

const val1 = new Menu(2,0);
const val2 = new Menu(1,3);
const val3 = new Menu(3,2);
console.log(val1.total);
console.log(val2.total);
console.log(val3.total);

Self-check quiz
1. class

2. Using the following syntax:
class Person {
 constructor(firstname, lastname) {
 this.firstname = firstname;
 this.lastname = lastname;
 }
}

3. Inheritance
4. Answers:

• True

• False

• True

• True

• False

5. B

Chapter 8, Built-In JavaScript Methods

Practice exercises

Practice exercise 8.1
const secretMes1 = "How's%20it%20going%3F";
const secretMes2 = "How's it going?";
const decodedComp = decodeURIComponent(secretMes1);
console.log(decodedComp);

Appendix

[450]

const encodedComp = encodeURIComponent(secretMes2);
console.log(encodedComp);
const uri = "http://www.basescripts.com?=Hello World";
const encoded = encodeURI(uri);
console.log(encoded);

Practice exercise 8.2
const arr = ["Laurence", "Mike", "Larry", "Kim", "Joanne", "Laurence",
"Mike", "Laurence", "Mike", "Laurence", "Mike"];
const arr2 = arr.filter ((value, index, array) => {
 console.log(value,index,array.indexOf(value));
 return array.indexOf(value) === index;
});
console.log(arr2);

Practice exercise 8.3
const myArr = [1,4,5,6];
const myArr1 = myArr.map(function(ele){
 return ele * 2;
});
console.log(myArr1);

const myArr2 = myArr.map((ele)=> ele*2);
console.log(myArr2);

Practice exercise 8.4
const val = "thIs will be capiTalized for each word";
function wordsCaps(str) {
 str = str.toLowerCase();
 const tempArr = [];
 let words = str.split(" ");
 words.forEach(word => {
 let temp = word.slice(0, 1).toUpperCase() + word.slice(1);
 tempArr.push(temp);
 });
 return tempArr.join(" ");
}
console.log(wordsCaps(val));

Practice Exercise, Project, and Self-Check Quiz Answers

[451]

Practice exercise 8.5
let val = "I love JavaScript";
val = val.toLowerCase();
let vowels = ["a","e","i","o","u"];
vowels.forEach((letter,index) =>{
 console.log(letter);
 val = val.replaceAll(letter,index);
});
console.log(val);

Practice exercise 8.6
console.log(Math.ceil(5.7));
console.log(Math.floor(5.7));
console.log(Math.round(5.7));
console.log(Math.random());
console.log(Math.floor(Math.random()*11)); // 0-10
console.log(Math.floor(Math.random()*10)+1); // 1-10;
console.log(Math.floor(Math.random()*100)+1); // 1-100;
function ranNum(min, max) {
 return Math.floor(Math.random() * (max - min + 1)) + min;
}
for (let x = 0; x < 100; x++) {
 console.log(ranNum(1, 100));
}

Practice exercise 8.7
let future = new Date(2025, 5, 15);
console.log(future);
const months = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"];
let day = future.getDate();
let month = future.getMonth();
let year = future.getFullYear();
let myDate = `${months[month-1]} ${day} ${year}`;
console.log(myDate);

Appendix

[452]

Projects

Word scrambler
let str = "JavaScript";

function scramble(val) {
 let max = val.length;
 let temp = "";
 for(let i=0;i<max;i++){
 console.log(val.length);
 let index = Math.floor(Math.random() * val.length);
 temp += val[index];
 console.log(temp);
 val = val.substr(0, index) + val.substr(index + 1);
 console.log(val);
 }
 return temp;
}
console.log(scramble(str));

Countdown timer
const endDate = "Sept 1 2022";

function countdown() {
 const total = Date.parse(endDate) - new Date();
 const days = Math.floor(total / (1000 * 60 * 60 * 24));
 const hrs = Math.floor((total / (1000 * 60 * 60)) % 24);
 const mins = Math.floor((total / 1000 / 60) % 60);
 const secs = Math.floor((total / 1000) % 60);
 return {
 days,
 hrs,
 mins,
 secs
 };
}

function update() {
 const temp = countdown();

Practice Exercise, Project, and Self-Check Quiz Answers

[453]

 let output = "";
 for (const property in temp) {
 output += (`${property}: ${temp[property]} `);
 }
 console.log(output);
 setTimeout(update, 1000);
}

update();

Self-check quiz
1. decodeURIComponent(e)

2. 4

3. ["Hii", "hi", "hello", "Hii", "hi", "hi World", "Hi"]

4. ["hi", "hi World"]

Chapter 9, The Document Object Model

Practice exercises

Practice exercise 9.1

Appendix

[454]

Practice exercise 9.2
console.log(window.location.protocol);
console.log(window.location.href);

Practice exercise 9.3
<script>
 const output = document.querySelector('.output');
 output.textContent = "Hello World";
 output.classList.add("red");
 output.id = "tester";
 output.style.backgroundColor = "red";
 console.log(document.URL);
 output.textContent = document.URL;
</script>

Projects

Manipulating HTML elements with JavaScript
const output = document.querySelector(".output");
const mainList = output.querySelector("ul");
mainList.id = "mainList";

Practice Exercise, Project, and Self-Check Quiz Answers

[455]

console.log(mainList);
const eles = document.querySelectorAll("div");
for (let x = 0; x < eles.length; x++) {
 console.log(eles[x].tagName);
 eles[x].id = "id" + (x + 1);
 if (x % 2) {
 eles[x].style.color = "red";
 } else {
 eles[x].style.color = "blue";
 }
}

Self-check quiz
1. You should see an object representing the list of elements contained within

body object of the HTML page.

2. document.body.textContent = "Hello World";

3. The code is as follows:
for (const property in document) {
 console.log(`${property}: ${document[property]}`);
}

4. The code is as follows:
for (const property in window) {
 console.log(`${property}: ${document[window]}`);
}

5. The code is as follows:

<!doctype html>
<html>
<head>

Appendix

[456]

 <title>JS Tester</title>
</head>
<body>
 <h1>Test</h1>

 <script>
 const output = document.querySelector('h1');
 output.textContent = "Hello World";
 </script>
</body>
</html>

Chapter 10, Dynamic Element
Manipulation Using the DOM

Practice exercises

Practice exercise 10.1

Practice Exercise, Project, and Self-Check Quiz Answers

[457]

Practice exercise 10.2
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
</head>
<body>
 <div id="one">Hello World</div>
 <script>
 const myEle = document.getElementById("one");
 console.log(myEle);
 </script>
</body>
</html>

Practice exercise 10.3
<!doctype html>
<html>
<head>
 <title>Dynamic event manipulation</title>
</head>
<body>
 <div>Hello World 1</div>
 <div>Hello World 2</div>
 <div>Hello World 3</div>
 <script>
 const myEles = document.getElementsByTagName("div");
 console.log(myEles[1]);
 </script>
</body>
</html>

Practice exercise 10.4
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
</head>
<body>

Appendix

[458]

 <body>
 <h1 class="ele">Hello World</h1>
 <div class="ele">Hello World 1</div>
 <div class="ele">Hello World 3</div>
 <script>
 const myEles = document.getElementsByClassName("ele");
 console.log(myEles[0]);
 </script>
</html>

Practice exercise 10.5
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
</head>
<body>
 <body>
 <h1 class="ele">Hello World</h1>
 <div class="ele">Hello World 1</div>
 <div class="ele">Hello World 3</div>
 <p class="ele">Hello World 4</p>
 <script>
 const myEle = document.querySelector(".ele");
 console.log(myEle);
 </script>
</html>

Practice exercise 10.6
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div class="container">
 <div class="myEle">One</div>
 <div class="myEle">Two</div>
 <div class="myEle">Three</div>

Practice Exercise, Project, and Self-Check Quiz Answers

[459]

 <div class="myEle">Four</div>
 <div class="myEle">Five</div>
 </div>
 <script>
 const eles = document.querySelectorAll(".myEle");
 console.log(eles);
 eles.forEach((el) => {
 console.log(el);
 });
 </script>
</body>
</html>

Practice exercise 10.7
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div>
 <button onclick="message(this)">Button 1</button>
 <button onclick="message(this)">Button 2</button>
 </div>
 <script>
 function message(el) {
 console.dir(el.textContent);
 }
 </script>
</body>
</html>

Practice exercise 10.8
 <script>
 const message = document.querySelector("#message");
 const myArray = ["Laurence", "Mike", "John", "Larry", "Kim",
 "Joanne", "Lisa", "Janet", "Jane"];
 build();
 //addClicks();

Appendix

[460]

 function build() {
 let html = "<h1>My Friends Table</h1><table>";
 myArray.forEach((item, index) => {
 html += `<tr class="box" data-row="${index+1}"
 data-name="${item}" onclick="getData(this)">
 <td>${item}</td>`;
 html += `<td >${index + 1}</td></tr>`;
 });
 html += "</table>";
 document.getElementById("output").innerHTML = html;
 }

 function getData(el) {
 let temp = el.getAttribute("data-row");
 let tempName = el.getAttribute("data-name");
 message.innerHTML = `${tempName } is in row #${temp}`;
 }
 </script>

Practice exercise 10.9
 <script>
 const btns = document.querySelectorAll("button");
 btns.forEach((btn)=>{
 function output(){
 console.log(this.textContent);
 }
 btn.addEventListener("click",output);
 });
 </script>

Practice exercise 10.10
 <script>
 document.getElementById("addNew").onclick = function () {
 addOne();
 }
 function addOne() {
 var a = document.getElementById("addItem").value;
 var li = document.createElement("li");
 li.appendChild(document.createTextNode(a));

Practice Exercise, Project, and Self-Check Quiz Answers

[461]

 document.getElementById("sList").appendChild(li);
 }
 </script>

Projects

Collapsible accordion component
 <script>
 const menus = document.querySelectorAll(".title");
 const openText = document.querySelectorAll(".myText");
 menus.forEach((el) => {
 el.addEventListener("click", (e) => {
 console.log(el.nextElementSibling);
 remover();
 el.nextElementSibling.classList.toggle("active");
 })
 })
 function remover() {
 openText.forEach((ele) => {
 ele.classList.remove("active");
 })
 }
 </script>

Interactive voting system
 <script>
 window.onload = build;
 const myArray = ["Laurence", "Mike", "John", "Larry"];
 const message = document.getElementById("message");
 const addNew = document.getElementById("addNew");
 const newInput = document.getElementById("addFriend");
 const output = document.getElementById("output");
 addNew.onclick = function () {
 const newFriend = newInput.value;
 adder(newFriend, myArray.length, 0);
 myArray.push(newFriend);
 }
 function build() {

Appendix

[462]

 myArray.forEach((item, index) => {
 adder(item, index, 0);
 });
 }
 function adder(name, index, counter) {
 const tr = document.createElement("tr");
 const td1 = document.createElement("td");
 td1.classList.add("box");
 td1.textContent = index + 1;
 const td2 = document.createElement("td");
 td2.textContent = name;
 const td3 = document.createElement("td");
 td3.textContent = counter;
 tr.append(td1);
 tr.append(td2);
 tr.append(td3);
 tr.onclick= function () {
 console.log(tr.lastChild);
 let val = Number(tr.lastChild.textContent);
 val++;
 tr.lastChild.textContent = val;
 }
 output.appendChild(tr);
 }
 </script>

Hangman game
 <script>
 const game = { cur: "", solution: "", puzz: [], total: 0 };
 const myWords = ["learn Javascript", "learn html",
 "learn css"];
 const score = document.querySelector(".score");
 const puzzle = document.querySelector(".puzzle");
 const letters = document.querySelector(".letters");
 const btn = document.querySelector("button");
 btn.addEventListener("click", startGame);
 function startGame() {
 if (myWords.length > 0) {
 btn.style.display = "none";
 game.puzz = [];

Practice Exercise, Project, and Self-Check Quiz Answers

[463]

 game.total = 0;
 game.cur = myWords.shift();
 game.solution = game.cur.split("");
 builder();
 } else {
 score.textContent = "No More Words.";
 }
 }
 function createElements(elType, parentEle, output, cla) {
 const temp = document.createElement(elType);
 temp.classList.add("boxE");
 parentEle.append(temp);
 temp.textContent = output;
 return temp;
 }
 function updateScore() {
 score.textContent = `Total Letters Left : ${game.total}`;
 if (game.total <= 0) {
 console.log("game over");
 score.textContent = "Game Over";
 btn.style.display = "block";
 }
 }
 function builder() {
 letters.innerHTML = "";
 puzzle.innerHTML = "";
 game.solution.forEach((lett) => {
 let div = createElements("div", puzzle, "-", "boxE");
 if (lett == " ") {
 div.style.borderColor = "white";
 div.textContent = " ";
 } else {
 game.total++;
 }
 game.puzz.push(div);
 updateScore();
 })
 for (let i = 0; i < 26; i++) {
 let temp = String.fromCharCode(65 + i);
 let div = createElements("div", letters, temp,"box");

Appendix

[464]

 let checker = function (e) {
 div.style.backgroundColor = "#ddd";
 div.classList.remove("box");
 div.classList.add("boxD");
 div.removeEventListener("click", checker);
 checkLetter(temp);
 }
 div.addEventListener("click", checker);
 }
 }
 function checkLetter(letter) {
 console.log(letter);
 game.solution.forEach((ele, index) => {
 if (ele.toUpperCase() == letter) {
 game.puzz[index].textContent = letter;
 game.total--;
 updateScore();
 };
 };
)
 }
 </script>

Self-check quiz
1. Hello
 World

2. Hello

World

3. Hello World

4. When three gets clicked, the output is three. When one gets clicked, the
output is:
one

two

three

5. btn.removeEventListener("click", myFun);

Practice Exercise, Project, and Self-Check Quiz Answers

[465]

Chapter 11, Interactive Content and Event
Listeners

Practice exercises

Practice exercise 11.1
<!DOCTYPE html>
<html>

<head>
 <title>Laurence Svekis</title>
</head>

<body>
 <script>
 let darkMode = false;
 window.onclick = () => {
 console.log(darkMode);
 if (!darkMode) {
 document.body.style.backgroundColor = "black";
 document.body.style.color = "white";
 darkMode = true;
 } else {
 document.body.style.backgroundColor = "white";
 document.body.style.color = "black";
 darkMode = false;
 }
 }
 </script>
</body>

</html>

Appendix

[466]

Practice exercise 11.2
<!doctype html>
<html>
<body>
 <div>red</div>
 <div>blue</div>
 <div>green</div>
 <div>yellow</div>
 <script>
 const divs = document.querySelectorAll("div");
 divs.forEach((el)=>{
 el.addEventListener("click",()=>{
 document.body.style.backgroundColor = el.textContent;
 });
 })
 </script>
</body>
</html>

Practice exercise 11.3
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <script>
 document.addEventListener("DOMContentLoaded", (e) => {
 message("Document ready", e);
 });
 window.onload = (e) => {
 message("Window ready", e);
 }
 function message(val, event) {
 console.log(event);
 console.log(val);
 }
 </script>
</body>
</html>

Practice Exercise, Project, and Self-Check Quiz Answers

[467]

Practice exercise 11.4
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div class="output"></div>
 <script>
 const output = document.querySelector(".output");
 output.textContent = "hello world";
 output.style.height = "200px";
 output.style.width = "400px";
 output.style.backgroundColor = "red";
 output.addEventListener("mousedown", function (e) {
 message("green", e);
 });
 output.addEventListener("mouseover", function (e) {
 message("red", e);
 });
 output.addEventListener("mouseout", function (e) {
 message("yellow", e);
 });
 output.addEventListener("mouseup", function (e) {
 message("blue", e);
 });
 function message(elColor, event) {
 console.log(event.type);
 output.style.backgroundColor = elColor;
 }
 </script>
</body>
</html>

Practice exercise 11.5
 <script>
 const myInput = document.querySelector("input[name='message']");
 const output = document.querySelector(".output");
 const btn1 = document.querySelector(".btn1");

Appendix

[468]

 const btn2 = document.querySelector(".btn2");
 const btn3 = document.querySelector(".btn3");
 const log = [];
 btn1.addEventListener("click", tracker);
 btn2.addEventListener("click", tracker);
 btn3.addEventListener("click", (e) => {
 console.log(log);
 });
 function tracker(e) {
 output.textContent = myInput.value;
 const ev = e.target;
 console.dir(ev);
 const temp = {
 message: myInput.value,
 type: ev.type,
 class: ev.className,
 tag: ev.tagName
 };
 log.push(temp);
 myInput.value = "";
 }
 </script>

Practice exercise 11.6
 <script>
 const main = document.querySelector(".container");
 const boxes = document.querySelectorAll(".box");
 main.addEventListener("click", (e) => {
 console.log("4");
 },false);
 main.addEventListener("click", (e) => {
 console.log("1");
 },true);

 boxes.forEach(ele => {
 ele.addEventListener("click", (e) => {
 console.log("3");
 console.log(e.target.textContent);
 },false);

Practice Exercise, Project, and Self-Check Quiz Answers

[469]

 ele.addEventListener("click", (e) => {
 console.log("2");
 console.log(e.target.textContent);
 },true);

 });
 </script>

Practice exercise 11.7
 <script>
 const output = document.querySelector(".output1");

 const in1 = document.querySelector("input[name='first']");
 const in2 = document.querySelector("input[name='last']");
 in1.addEventListener("change", (e) => {
 console.log("change");
 updater(in1.value);
 });
 in1.addEventListener("blur", (e) => {
 console.log("blur");
 });
 in1.addEventListener("focus", (e) => {
 console.log("focus");
 });
 in2.addEventListener("change", (e) => {
 console.log("change");
 updater(in2.value);
 });
 in2.addEventListener("blur", (e) => {
 console.log("blur");
 });
 in2.addEventListener("focus", (e) => {
 console.log("focus");
 });
 function updater(str) {
 output.textContent = str;
 }
 </script>

Appendix

[470]

Practice exercise 11.8
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <div class="output"></div>
 <input type="text" name="myNum1">
 <input type="text" name="myNum2">
 <script>
 const eles = document.querySelectorAll("input");
 const output = document.querySelector(".output");
 eles.forEach(el => {
 el.addEventListener("keydown", (e) => {
 if (!isNaN(e.key)) {
 output.textContent += e.key;
 }
 });
 el.addEventListener("keyup", (e) => {
 console.log(e.key);
 });
 el.addEventListener("paste", (e) => {
 console.log('pasted');
 });
 });
 </script>
</body>
</html>

Practice exercise 11.9
 <script>
 const dragme = document.querySelector("#dragme");
 dragme.addEventListener("dragstart", (e) => {
 dragme.style.opacity = .5;
 });
 dragme.addEventListener("dragend", (e) => {
 dragme.style.opacity = "";
 });
 const boxes = document.querySelectorAll(".box");

Practice Exercise, Project, and Self-Check Quiz Answers

[471]

 boxes.forEach(box => {
 box.addEventListener("dragenter", (e) => {
 e.target.classList.add('red');
 });
 box.addEventListener("dragover", (e) => {
 e.preventDefault();
 });
 box.addEventListener("dragleave", (e) => {
 //console.log("leave");
 e.target.classList.remove('red');
 });
 box.addEventListener("drop", (e) => {
 e.preventDefault();
 console.log("dropped");
 e.target.appendChild(dragme);
 });
 });
 function dragStart(e) {
 console.log("Started");
 }
 </script>

Practice exercise 11.10
<!doctype html>
<html>
<head>
 <title>JS Tester</title>
</head>
<body>
 <form action="index2.html" method="get">
 First: <input type="text" name="first">

Last: <input type="text" name="last">

Age: <input type="number" name="age">

<input type="submit" value="submit">
 </form>
 <script>
 const form = document.querySelector("form");
 const email = document.querySelector("#email");
 form.addEventListener("submit", (e) => {
 let error = false;

Appendix

[472]

 if (checker(form.first.value)) {
 console.log("First Name needed");
 error = true;
 }
 if (checker(form.last.value)) {
 console.log("Last Name needed");
 error = true;
 }
 if (form.age.value < 19) {
 console.log("You must be 19 or over");
 error = true;
 }
 if (error) {
 e.preventDefault();
 console.log("please review the form");
 }
 });
 function checker(val) {
 console.log(val.length);
 if (val.length < 6) {
 return true;
 }
 return false;
 }
 </script>
</body>
</html>

Practice exercise 11.11
<!doctype html>
<html>
<style>
 div {
 background-color: purple;
 width: 100px;
 height: 100px;
 position: absolute;
 }
</style>
<body>

Practice Exercise, Project, and Self-Check Quiz Answers

[473]

 <div id="block"></div>
 <script>
 const main = document.querySelector("#block");
 let mover = { speed: 10, dir: 1, pos: 0 };
 main.addEventListener("click", moveBlock);
 function moveBlock() {
 let x = 30;
 setInterval(function () {
 if (x < 1) {
 clearInterval();
 } else {
 if (mover.pos > 800 || mover.pos < 0) {
 mover.dir *= -1;
 }
 x--;
 mover.pos += x * mover.dir;
 main.style.left = mover.pos + "px";
 console.log(mover.pos);
 }
 }, 2);
 }
 </script>
</body>
</html>

Projects

Build your own analytics
<!doctype html >
<html>
<head>
 <title>JS Tester</title>
 <style>.box{width:200px;height:100px;border:1px solid black}</
style>
</head>
<body>
 <div class="container">
 <div class="box" id="box0">Box #1</div>
 <div class="box" id="box1">Box #2</div>
 <div class="box" id="box2">Box #3</div>

Appendix

[474]

 <div class="box" id="box3">Box #4</div>
 </div>
 <script>
 const counter = [];
 const main = document.querySelector(".container");
 main.addEventListener("click",tracker);
 function tracker(e){
 const el = e.target;
 if(el.id){
 const temp = {};
 temp.content = el.textContent;
 temp.id = el.id;
 temp.tagName = el.tagName;
 temp.class = el.className;
 console.dir(el);
 counter.push(temp);
 console.log(counter);
 }
 }
 </script>
</body>
</html>

Star rater system
 <script>
 const starsUL = document.querySelector(".stars");
 const output = document.querySelector(".output");
 const stars = document.querySelectorAll(".star");
 stars.forEach((star, index) => {
 star.starValue = (index + 1);
 star.addEventListener("click", starRate);
 });
 function starRate(e) {
 output.innerHTML =
 `You Rated this ${e.target.starValue} stars`;
 stars.forEach((star, index) => {
 if (index < e.target.starValue) {
 star.classList.add("orange");
 } else {
 star.classList.remove("orange");
 }

Practice Exercise, Project, and Self-Check Quiz Answers

[475]

 });
 }
 </script>

Mouse position tracker
<!DOCTYPE html>
<html>
<head>
 <title>Complete JavaScript Course</title>
 <style>
 .holder {
 display: inline-block;
 width: 300px;
 height: 300px;
 border: 1px solid black;
 padding: 10px;
 }

 .active {
 background-color: red;
 }
 </style>
</head>
<body>
 <div class="holder">
 <div id="output"></div>
 </div>
 <script>
 const ele = document.querySelector(".holder");
 ele.addEventListener("mouseover",
 (e) => { e.target.classList.add("active"); });
 ele.addEventListener("mouseout",
 (e) => { e.target.classList.remove("active"); });
 ele.addEventListener("mousemove", coordin);
 function coordin() {
 let html = "X:" + event.clientX + " | Y:" + event.clientY;
 document.getElementById("output").innerHTML = html;
 }
 </script>
</body>
</html>

Appendix

[476]

Box clicker speed test game
 <script>
 const output = document.querySelector('.output');
 const message = document.querySelector('.message');
 message.textContent = "Press to Start";
 const box = document.createElement('div');
 const game = {
 timer: 0,
 start: null
 };
 box.classList.add('box');
 output.append(box);

 box.addEventListener('click', (e) => {
 box.textContent = "";
 box.style.display = 'none';
 game.timer = setTimeout(addBox, ranNum(3000));
 if (!game.start) {
 message.textContent = 'Loading....';
 } else {
 const cur = new Date().getTime();
 const dur = (cur - game.start) / 1000;
 message.textContent = `It took ${dur} seconds to click`;
 }
 });

 function addBox() {
 message.textContent = 'Click it...';
 game.start = new Date().getTime();
 box.style.display = 'block';
 box.style.left = ranNum(450) + 'px';
 box.style.top = ranNum(450) + 'px';
 }

 function ranNum(max) {
 return Math.floor(Math.random() * max);
 }
 </script>

Practice Exercise, Project, and Self-Check Quiz Answers

[477]

Self-check quiz
1. Window Object Model.
2. The preventDefault() method cancels the event if it can be canceled. The

default action that belongs to the event will not occur.

Chapter 12, Intermediate JavaScript

Practice exercises

Practice exercise 12.1
 <script>
 const output = document.getElementById("output");
 const findValue = document.getElementById("sText");
 const replaceValue = document.getElementById("rText");
 document.querySelector("button").addEventListener("click", lookUp);

 function lookUp() {
 const s = output.textContent;
 const rt = replaceValue.value;
 const re = new RegExp(findValue.value, "gi");
 if (s.match(re)) {
 let newValue = s.replace(re, rt);
 output.textContent = newValue;
 }
 }
 </script>

Practice exercise 12.2
 <script>
 const output = document.querySelector(".output");
 const emailVal = document.querySelector("input");
 const btn = document.querySelector("button");
 const emailExp =
 /([A-Za-z0-9._-]+@[A-Za-z0-9._-]+\.[A-Za-z0-9]+)\w+/;
 btn.addEventListener("click", (e) => {

Appendix

[478]

 const val = emailVal.value;
 const result = emailExp.test(val);
 let response = "";
 if (!result) {
 response = "Invalid Email";
 output.style.color = "red";
 } else {
 response = "Valid Email";
 output.style.color = "green";
 }
 emailVal.value = "";
 output.textContent = response;
 });
 </script>

Practice exercise 12.3
function showNames() {
 let lastOne = "";
 for (let i = 0; i < arguments.length; i++) {
 lastOne = arguments[i];
 }
 return lastOne;
}
console.log(showNames("JavaScript", "Laurence", "Mike", "Larry"));

Practice exercise 12.4
15
45

Practice exercise 12.5
function test(val) {
 try {
 if (isNaN(val)) {
 throw "Not a number";
 } else {
 console.log("Got number");
 }

Practice Exercise, Project, and Self-Check Quiz Answers

[479]

 } catch (e) {
 console.error(e);
 } finally {
 console.log("Done " + val);
 }
}
test("a");
test(100);

Practice exercise 12.6
 <script>
 console.log(document.cookie);
 console.log(rCookie("test1"));
 console.log(rCookie("test"));
 cCookie("test1", "new Cookie", 30);
 dCookie("test2");
 function cCookie(cName, value, days) {
 if (days) {
 const d = new Date();
 d.setTime(d.getTime() + (days * 24 * 60 * 60 * 1000));
 let e = "; expires=" + d.toUTCString();
 document.cookie = cName + "=" + value + e + "; path=/";
 }
 }
 function rCookie(cName) {
 let cookieValue = false;
 let arr = document.cookie.split("; ");
 arr.forEach(str => {
 const cookie = str.split("=");
 if (cookie[0] == cName) {
 cookieValue = cookie[1];
 }
 });
 return cookieValue;
 }
 function dCookie(cName) {
 cCookie(cName, "", -1);
 }
 </script>

Appendix

[480]

Practice exercise 12.7
 <script>
 const userTask = document.querySelector(".main input");
 const addBtn = document.querySelector(".main button");
 const output = document.querySelector(".output");
 const tasks = JSON.parse(localStorage.getItem("tasklist")) || [];
 addBtn.addEventListener("click", createListItem);
 if (tasks.length > 0) {
 tasks.forEach((task) => {
 genItem(task.val, task.checked);
 });
 }
 function saveTasks() {
 localStorage.setItem("tasklist", JSON.stringify(tasks));
 }
 function buildTasks() {
 tasks.length = 0;
 const curList = output.querySelectorAll("li");
 curList.forEach((el) => {
 const tempTask = {
 val: el.textContent,
 checked: false
 };
 if (el.classList.contains("ready")) {
 tempTask.checked = true;
 }
 tasks.push(tempTask);
 });
 saveTasks();
 }
 function genItem(val, complete) {
 const li = document.createElement("li");
 const temp = document.createTextNode(val);
 li.appendChild(temp);
 output.append(li);
 userTask.value = "";
 if (complete) {
 li.classList.add("ready");
 }

Practice Exercise, Project, and Self-Check Quiz Answers

[481]

 li.addEventListener("click", (e) => {
 li.classList.toggle("ready");
 buildTasks();
 });
 return val;
 }
 function createListItem() {
 const val = userTask.value;
 if (val.length > 0) {
 const myObj = {
 val: genItem(val, false),
 checked: false
 };
 tasks.push(myObj);
 saveTasks();
 }
 }
 </script>

Practice exercise 12.8
let myList = [{
 "name": "Learn JavaScript",
 "status": true
 },
 {
 "name": "Try JSON",
 "status": false
 }
];

reloader();
function reloader() {
 myList.forEach((el) => {
 console.log(`${el.name} = ${el.status}`);
 });
}

Appendix

[482]

Practice Exercise 12.9
let myList = [{
 "name": "Learn JavaScript",
 "status": true
},
{
 "name": "Try JSON",
 "status": false
}
];

const newStr = JSON.stringify(myList);
const newObj = JSON.parse(newStr);
newObj.forEach((el)=>{
 console.log(el);
});

Projects

Email extractor
 <script>
 const firstArea = document.querySelector(
 "textarea[name='txtarea']");
 const secArea = document.querySelector(
 "textarea[name='txtarea2']");
 document.querySelector("button").addEventListener("click", lookUp);
 function lookUp() {
 const rawTxt = firstArea.value;
 const eData = rawTxt.match(
 /([a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.[a-zA-Z0-9._-]+)/gi);
 const holder = [];
 for (let x = 0; x < eData.length; x++) {
 if (holder.indexOf(eData[x]) == -1) {
 holder.push(eData[x]);
 }
 }
 secArea.value = holder.join(',');
 }
 </script>

Practice Exercise, Project, and Self-Check Quiz Answers

[483]

Form validator
 <script>
 const myForm = document.querySelector("form");
 const inputs = document.querySelectorAll("input");
 const errors = document.querySelectorAll(".error");
 const required = ["email", "userName"];
 myForm.addEventListener("submit", validation);
 function validation(e) {
 let data = {};
 e.preventDefault();
 errors.forEach(function (item) {
 item.classList.add("hide");
 });
 let error = false;
 inputs.forEach(function (el) {
 let tempName = el.getAttribute("name");
 if (tempName != null) {
 el.style.borderColor = "#ddd";
 if (el.value.length == 0 &&
 required.includes(tempName)) {
 addError(el, "Required Field", tempName);
 error = true;
 }
 if (tempName == "email") {
 let exp = /([A-Za-z0-9._-]+@[A-Za-z0-9._-]+\.
[A-Za-z0-9]+)\w+/;
 let result = exp.test(el.value);
 if (!result) {
 addError(el, "Invalid Email", tempName);
 error = true;
 }
 }
 if (tempName == "password") {
 let exp = /[A-Za-z0-9]+$/;
 let result = exp.test(el.value);
 if (!result) {
 addError(el, "Only numbers and Letters",
 tempName);
 error = true;
 }

Appendix

[484]

 if (!(el.value.length > 3 &&
 el.value.length < 9)) {
 addError(el, "Needs to be between 3-8 " +
 "characters", tempName);
 error = true;
 }
 }
 data[tempName] = el.value;
 }
 });
 if (!error) {
 myForm.submit();
 }
 }

 function addError(el, mes, fieldName) {
 let temp = el.nextElementSibling;
 temp.classList.remove("hide");
 temp.textContent = fieldName.toUpperCase() + " " + mes;
 el.style.borderColor = "red";
 el.focus();
 }
 </script>

Simple math quiz
<!doctype html>
<html>
<head>
 <title>Complete JavaScript Course</title>
</head>
<body>
 +
 =
 <input type="text" name="answer"><button>Check</button>
 <div class="output"></div>
 <script>
 const app = function () {
 const game = {};
 const val1 = document.querySelector(".val1");
 const val2 = document.querySelector(".val2");
 const output = document.querySelector(".output");

Practice Exercise, Project, and Self-Check Quiz Answers

[485]

 const answer = document.querySelector("input");
 function init() {
 document.querySelector("button").addEventListener(
 "click", checker);
 loadQuestion();
 }
 function ranValue(min, max) {
 return Math.floor(Math.random() * (max - min + 1) +
 min);
 }
 function loadQuestion() {
 game.val1 = ranValue(1, 100);
 game.val2 = ranValue(1, 100);
 game.answer = game.val1 + game.val2;
 val1.textContent = game.val1;
 val2.textContent = game.val2;
 }
 function checker() {
 let bg = answer.value == game.answer ? "green" : "red";
 output.innerHTML +=
 `<div style="color:${bg}">${game.val1} +
 ${game.val2} = ${game.answer} (${answer.value})
 </div>`;
 answer.value = "";
 loadQuestion();
 }
 return {
 init: init
 };
 }();
 document.addEventListener('DOMContentLoaded', app.init);
 </script>
</body>
</html>

Self-check quiz
1. The range matched is from a to e and is case sensitive. It will return the rest

of the word: enjoy avaScript.
2. Yes.
3. It will clear cookies from the site.
4. hello world

Appendix

[486]

5. a is not defined.
6. a

c

b

Chapter 13, Concurrency

Practice exercises

Practice exercise 13.1
function greet(fullName){
 console.log(`Welcome, ${fullName[0]} ${fullName[1]}`)
}
function processCall(user, callback){
 const fullName = user.split(" ");
 callback(fullName);
}

processCall("Laurence Svekis", greet);

Practice exercise 13.2
const myPromise = new Promise((resolve, reject) => {
 resolve("Start Counting");
});

function counter(val){
 console.log(val);
}

myPromise
 .then(value => {counter(value); return "one"})
 .then(value => {counter(value); return "two"})
 .then(value => {counter(value); return "three"})
 .then(value => {counter(value);});

Practice Exercise, Project, and Self-Check Quiz Answers

[487]

Practice exercise 13.3
 let cnt = 0;
 function outputTime(val) {
 return new Promise(resolve => {
 setTimeout(() => {
 cnt++;
 resolve(`x value ${val} counter:${cnt}`);
 }, 1000);
 });
 }
 async function aCall(val) {
 console.log(`ready ${val} counter:${cnt}`);
 const res = await outputTime(val);
 console.log(res);
 }
 for (let x = 1; x < 4; x++) {
 aCall(x);
 }

Projects

Password checker
const allowed = ["1234", "pass", "apple"];

function passwordChecker(pass) {
 return allowed.includes(pass);
}

function login(password) {
 return new Promise((resolve, reject) => {
 if (passwordChecker(password)) {
 resolve({
 status: true
 });
 } else {
 reject({
 status: false
 });
 }

Appendix

[488]

 });
}

function checker(pass) {
 login(pass)
 .then(token => {
 console.log("Approve:");
 console.log(token);
 })
 .catch(value => {
 console.log("Reject:");
 console.log(value);
 })
}
checker("1234");
checker("wrong");

Self-check quiz
1. The updated code is as follows:

function addOne(val){
 return val + 1;
}
function total(a, b, callback){
 const sum = a + b;
 return callback(sum);
}
console.log(total(4, 5, addOne));

2. The console will show the error message Error: Oh no.
3. The updated code is as follows:

function checker(val) {
 return new Promise((resolve, reject) => {
 if (val > 5) {
 resolve("Ready");
 } else {
 reject(new Error("Oh no"));
 }
 });
}

Practice Exercise, Project, and Self-Check Quiz Answers

[489]

checker(5)
 .then((data) => {console.log(data); })
 .catch((err) => {console.error(err); })
 .finally(() => { console.log("done");});

4. The updated code is as follows:

async function myFun() {
 return "Hello";
}
myFun().then(
 function(val) { console.log(val); },
 function(err) { conole.log(err); }

Chapter 14, HTML5, Canvas, and
JavaScript

Practice exercises

Practice exercise 14.1
 <script>
 const message = document.getElementById("message");
 const output = document.querySelector(".output");
 const myInput = document.querySelector("input");
 myInput.addEventListener("change", uploadAndReadFile);
 function uploadAndReadFile(e) {
 const files = e.target.files;
 for (let i = 0; i < files.length; i++) {
 const file = files[i];
 const img = document.createElement("img");
 img.classList.add("thumb");
 img.file = file;
 output.appendChild(img);
 const reader = new FileReader();
 reader.onload = (function (myImg) {
 return function (e) {
 myImg.src = e.target.result;
 };

Appendix

[490]

 })(img);
 reader.readAsDataURL(file);
 }
 }
 </script>

Practice exercise 14.2
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <canvas id="canvas" width="640" height="640">Not Supported</canvas>
 <script>
 const canvas = document.querySelector('#canvas');
 const ctx = canvas.getContext("2d");
 ctx.fillStyle = "red";
 ctx.fillRect(100, 100, 500, 300); //filled shape
 ctx.strokeRect(90, 90, 520, 320); // outline
 ctx.clearRect(150, 150, 400, 200); //transparent
 </script>
</body>
</html>

Practice exercise 14.3
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }

Practice Exercise, Project, and Self-Check Quiz Answers

[491]

 </style>
</head>
<body>
 <canvas id="canvas" width="640" height="640">Not Supported</canvas>
 <script>
 const canvas = document.querySelector("#canvas");
 const ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.fillStyle = "red";
 ctx.arc(300, 130, 100, 0, Math.PI * 2);
 ctx.fill();
 ctx.beginPath();
 ctx.fillStyle = "black";
 ctx.arc(250, 120, 20, 0, Math.PI * 2);
 ctx.moveTo(370, 120);
 ctx.arc(350, 120, 20, 0, Math.PI * 2);
 ctx.moveTo(240, 160);
 ctx.arc(300, 160, 60, 0, Math.PI);
 ctx.fill();
 ctx.moveTo(300, 130);
 ctx.lineTo(300, 150);
 ctx.stroke();
 ctx.beginPath();
 ctx.moveTo(300, 230);
 ctx.lineTo(300, 270);
 ctx.lineTo(400, 270);
 ctx.lineTo(200, 270);
 ctx.lineTo(300, 270);
 ctx.lineTo(300, 350);
 ctx.lineTo(400, 500);
 ctx.moveTo(300, 350);
 ctx.lineTo(200, 500);
 ctx.stroke();
 ctx.beginPath();
 ctx.fillStyle = "blue";
 ctx.moveTo(200, 50);
 ctx.lineTo(400, 50);
 ctx.lineTo(300, 20);
 ctx.lineTo(200, 50);
 ctx.fill();
 ctx.stroke();

Appendix

[492]

 </script>
</body>
</html>

Practice exercise 14.4
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <canvas id="canvas" width="640" height="640">Not Supported</canvas>
 <script>
 const canvas = document.querySelector("#canvas");
 const ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.fillStyle = "red";
 ctx.arc(300, 130, 100, 0, Math.PI * 2);
 ctx.fill();
 ctx.beginPath();
 ctx.fillStyle = "black";
 ctx.arc(250, 120, 20, 0, Math.PI * 2);
 ctx.moveTo(370, 120);
 ctx.arc(350, 120, 20, 0, Math.PI * 2);
 ctx.moveTo(240, 160);
 ctx.arc(300, 160, 60, 0, Math.PI);
 ctx.fill();
 ctx.moveTo(300, 130);
 ctx.lineTo(300, 150);
 ctx.stroke();
 ctx.beginPath();
 ctx.moveTo(300, 230);
 ctx.lineTo(300, 270);
 ctx.lineTo(400, 270);
 ctx.lineTo(200, 270);
 ctx.lineTo(300, 270);

Practice Exercise, Project, and Self-Check Quiz Answers

[493]

 ctx.lineTo(300, 350);
 ctx.lineTo(400, 500);
 ctx.moveTo(300, 350);
 ctx.lineTo(200, 500);
 ctx.stroke();
 ctx.beginPath();
 ctx.fillStyle = "blue";
 ctx.moveTo(200, 50);
 ctx.lineTo(400, 50);
 ctx.lineTo(300, 20);
 ctx.lineTo(200, 50);
 ctx.fill();
 ctx.stroke();
 </script>
</body>
</html>

Practice exercise 14.5
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <div><label>Image</label>
 <input type="file" id="imgLoader" name="imgLoader">
 </div>
 <div><canvas id="canvas"></canvas></div>
 <script>
 const canvas = document.querySelector("#canvas");
 const ctx = canvas.getContext("2d");
 const imgLoader = document.querySelector("#imgLoader");
 imgLoader.addEventListener("change", handleUpload);
 function handleUpload(e) {
 console.log(e);

Appendix

[494]

 const reader = new FileReader();
 reader.onload = function (e) {
 console.log(e);
 const img = new Image();
 img.onload = function () {
 canvas.width = img.width / 2;
 canvas.height = img.height / 2;
 ctx.drawImage(img, 0, 0, img.width / 2,
 img.height / 2);
 }
 img.src = e.target.result;
 }
 reader.readAsDataURL(e.target.files[0]);
 }
 </script>
</body>
</html>

Practice exercise 14.6
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
 <style>
 #canvas {
 border: 1px solid black;
 }
 </style>
</head>
<body>
 <div><canvas id="canvas"></canvas></div>
 <script>
 const canvas = document.getElementById("canvas");
 const ctx = canvas.getContext("2d");
 const ballSize = 10;
 let x = canvas.width / 2;
 let y = canvas.height / 2;
 let dirX = 1;
 let dirY = 1;
 function drawBall() {
 ctx.beginPath();

Practice Exercise, Project, and Self-Check Quiz Answers

[495]

 ctx.arc(x, y, ballSize, 0, Math.PI * 2);
 ctx.fillStyle = "red";
 ctx.fill();
 ctx.closePath();
 }
 function move() {
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 drawBall();
 if (x > canvas.width - ballSize || x < ballSize) {
 dirX *= -1;
 }
 if (y > canvas.height - ballSize || y < ballSize) {
 dirY *= -1;
 }
 x += dirX;
 y += dirY;
 }
 setInterval(move, 10);
 </script>
</body>
</html>

Practice exercise 14.7
 <script>
 window.onload = init;
 const canvas = document.getElementById("canvas");
 const ctx = canvas.getContext("2d");
 canvas.style.border = "1px solid black";
 const penColor = document.querySelector("#penColor");
 const penWidth = document.querySelector("#penWidth");
 document.querySelector(".clear").addEventListener(
 "click", clearImg);
 canvas.width = 700;
 canvas.height = 700;
 let pos = {
 x: 0,
 y: 0,
 };
 function init() {
 canvas.addEventListener("mousemove", draw);
 canvas.addEventListener("mousemove", setPosition);

Appendix

[496]

 canvas.addEventListener("mouseenter", setPosition);
 }
 function draw(e) {
 if (e.buttons !== 1) return;
 ctx.beginPath();
 ctx.moveTo(pos.x, pos.y);
 setPosition(e);
 ctx.lineTo(pos.x, pos.y);
 ctx.strokeStyle = penColor.value;
 ctx.lineWidth = penWidth.value;
 ctx.lineCap = "round";
 ctx.stroke();
 }
 function setPosition(e) {
 pos.x = e.pageX;
 pos.y = e.pageY;
 }
 function clearImg() {
 const temp = confirm("Clear confirm?");
 if (temp) {
 ctx.clearRect(0, 0, canvas.offsetWidth,
 canvas.offsetHeight);
 }
 }
 </script>

Projects

Create a Matrix effect
<!doctype html>
<html>
<head>
 <title>Canvas HTML5</title>
</head>
<body>
 <div class="output"></div>
 <script>
 const canvas = document.createElement("canvas");
 const ctx = canvas.getContext("2d");
 canvas.setAttribute("width", "500");

Practice Exercise, Project, and Self-Check Quiz Answers

[497]

 canvas.setAttribute("height", "300");
 document.body.prepend(canvas);
 const colVal = [];
 for(let x=0;x<50;x++){
 colVal.push(0);
 }
 function matrix() {
 ctx.fillStyle = "rgba(0,0,0,.05)";
 ctx.fillRect(0, 0, canvas.width, canvas.height);
 ctx.fillStyle = "green";
 colVal.map((posY, index) => {
 let output = Math.random()<0.5?0:1;
 let posX = (index * 10) + 10;
 ctx.fillText(output, posX, posY);
 if (posY > 100 + Math.random() * 300) {
 colVal[index] = 0;

 } else {
 colVal[index] = posY + 10;
 }
 });
 }
 setInterval(matrix, 50);
 </script>
</body>
</html>

Countdown clock
<script>
 const endDate = document.querySelector("input[name='endDate']");
 const clock = document.querySelector(".clock");
 let timeInterval;
 let timeStop = true;
 const savedValue = localStorage.getItem("countdown") || false;
 if (savedValue) {
 startClock(savedValue);
 let inputValue = new Date(savedValue);
 endDate.valueAsDate = inputValue;
 }
 endDate.addEventListener("change", function (e) {

Appendix

[498]

 e.preventDefault();
 clearInterval(timeInterval);
 const temp = new Date(endDate.value);
 localStorage.setItem("countdown", temp);
 startClock(temp);
 timeStop = true;
 });
 function startClock(d) {
 function updateCounter() {
 let tl = (timeLeft(d));
 if (tl.total <= 0) {
 timeStop = false;
 }
 for (let pro in tl) {
 let el = clock.querySelector("." + pro);
 if (el) {
 el.innerHTML = tl[pro];
 }
 }
 }
 updateCounter();
 if (timeStop) {
 timeInterval = setInterval(updateCounter, 1000);
 } else {
 clearInterval(timeInterval);
 }
 }
 function timeLeft(d) {
 let currentDate = new Date();
 let t = Date.parse(d) - Date.parse(currentDate);
 let seconds = Math.floor((t / 1000) % 60);
 let minutes = Math.floor((t / 1000 / 60) % 60);
 let hours = Math.floor((t / (1000 * 60 * 60)) % 24);
 let days = Math.floor(t / (1000 * 60 * 60 * 24));
 return {
 "total": t,
 "days": days,
 "hours": hours,
 "minutes": minutes,
 "seconds": seconds
 };

Practice Exercise, Project, and Self-Check Quiz Answers

[499]

 }

 </script>

Online paint app
 <script>
 const canvas = document.querySelector("#canvas");
 const ctx = canvas.getContext("2d");
 const penColor = document.querySelector("#penColor");
 const penWidth = document.querySelector("#penWidth");
 const btnSave = document.querySelector(".save");
 const btnClear = document.querySelector(".clear");
 const output = document.querySelector(".output");
 const mLoc = {
 draw: false,
 x: 0,
 y: 0,
 lastX: 0,
 lastY: 0
 };
 canvas.style.border = "1px solid black";
 btnSave.addEventListener("click", saveImg);
 btnClear.addEventListener("click", clearCanvas);
 canvas.addEventListener("mousemove", (e) => {
 mLoc.lastX = mLoc.x;
 mLoc.lastY = mLoc.y;
 //console.log(e);
 mLoc.x = e.clientX;
 mLoc.y = e.clientY;
 draw();
 });
 canvas.addEventListener("mousedown", (e) => {
 mLoc.draw = true;
 });
 canvas.addEventListener("mouseup", (e) => {
 mLoc.draw = false;
 });
 canvas.addEventListener("mouseout", (e) => {
 mLoc.draw = false;
 });

Appendix

[500]

 function saveImg() {
 const dataURL = canvas.toDataURL();
 console.log(dataURL);
 const img = document.createElement("img");
 output.prepend(img);
 img.setAttribute("src", dataURL);
 const link = document.createElement("a");
 output.append(link);
 let fileName = Math.random().toString(16).substr(-8) +
 ".png"
 link.setAttribute("download", fileName);
 link.href = dataURL;
 link.click();
 output.removeChild(link);
 }
 function clearCanvas() {
 let temp = confirm("clear canvas?");
 if (temp) {
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 }
 }
 function draw() {
 if (mLoc.draw) {
 ctx.beginPath();
 ctx.moveTo(mLoc.lastX, mLoc.lastY);
 ctx.lineTo(mLoc.x, mLoc.y);
 ctx.strokeStyle = penColor.value;
 ctx.lineWidth = penWidth.value;
 ctx.stroke();
 ctx.closePath();
 }
 }
 </script>

Self-check quiz
1. const canvas = document.getElementById('canvas');

const ctx = canvas.getContext('2d');

2. Draws a red circle.

Practice Exercise, Project, and Self-Check Quiz Answers

[501]

3. moveTo(), lineTo(), stroke()

ctx.moveTo(100, 0);
ctx.lineTo(100, 100);
ctx.stroke();

Chapter 15, Next Steps

Practice exercises

Practice exercise 15.1
[
 {
 "name": "Learn JavaScript",
 "status" : true
 },
 {
 "name": "Try JSON",
 "status" : false
 }
]

const url = "list.json";
fetch(url).then(rep => rep.json())
.then((data) => {
data.forEach((el) => {
 console.log(`${el.name} = ${el.status}`);
 });
});

Projects

Working with JSON
<!DOCTYPE html>
<html>
 <head><title>Working with JSON Project</title></head>
 <body>

Appendix

[502]

 <script src="myscript.js"></script>
 </body>
</html>

// myscript.js

let url = "people.json";
fetch(url)
.then(response => response.json())
.then(data => {
 console.log(data);
 data.forEach(person => {
 console.log(`${person.first} ${person.last} - ${person.topic}`);
 });
});

// people.json
[
 {
 "first": "Laurence",
 "last": "Svekis",
 "topic": "JavaScript"
 },
 {
 "first": "John",
 "last": "Smith",
 "topic": "HTML"
 },
 {
 "first": "Jane",
 "last": "Doe",
 "topic": "CSS"
 }
]

List-making project
<!DOCTYPE html>
<html>
<head>

Practice Exercise, Project, and Self-Check Quiz Answers

[503]

 <title>JavaScript List Project</title>
</head>
<body>
 <div class="output"></div>
 <input type="text"><button>add</button>
 <script>
 const output = document.querySelector(".output");
 const myValue = document.querySelector("input");
 const btn1 = document.querySelector("button");
 const url = "list.json";
 btn1.addEventListener("click", addToList);
 let localData = localStorage.getItem("myList");
 let myList = [];
 window.addEventListener("DOMContentLoaded", () => {
 output.textContent = "Loading......";
 if (localData) {
 myList = JSON.parse(localStorage.getItem("myList"));
 output.innerHTML = "";
 myList.forEach((el, index) => {
 maker(el);
 });
 } else {
 reloader();
 }
 });

 function addToList() {
 if (myValue.value.length > 3) {
 const myObj = {
 "name": myValue.value
 }
 myList.push(myObj);
 maker(myObj);
 savetoStorage();
 }
 myValue.value = "";
 }

 function savetoStorage() {
 console.log(myList);

Appendix

[504]

 localStorage.setItem("myList", JSON.stringify(myList));
 }

 function reloader() {
 fetch(url).then(rep => rep.json())
 .then((data) => {
 myList = data;
 myList.forEach((el, index) => {
 maker(el);
 });
 savetoStorage();
 });
 }

 function maker(el) {
 const div = document.createElement("div");
 div.innerHTML = `${el.name}`;
 output.append(div);
 }
 </script>
</body>
</html>

Self-check quiz
1. Pre-programmed JavaScript modules that you can use to speed up your

development process.
2. Open the console and type $ or jQuery, and if you get a jQuery object as a

response, the page has reference to the $ or jQuery.
3. UnderscoreJS.
4. Type node and the filename into the terminal within the file directory.

[505]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Improve your learning with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

packt.com
http://www.packt.com

[507]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Responsive Web Design with HTML5 and CSS - Third Edition

Ben Frain

ISBN: 9781839211560

• Integrate CSS media queries into your designs; apply different styles to
different devices

• Load different sets of images depending upon screen size or resolution
• Leverage the speed, semantics, and clean markup of accessible HTML

patterns
• Implement SVGs into your designs to provide resolution-independent

images

https://www.packtpub.com/product/responsive-web-design-with-html5-and-css-third-edition/9781839211560

[508]

Other Books You May Enjoy

• Apply the latest features of CSS like custom properties, variable fonts, and
CSS Grid

• Add validation and interface elements like date and color pickers to HTML
forms

• Understand the multitude of ways to enhance interface elements with filters,
shadows, animations, and more

[509]

Other Books You May Enjoy

Learn Python Programming - Third Edition

Fabrizio Romano

Heinrich Kruger

ISBN: 9781801815093

• Get Python up and running on Windows, Mac, and Linux
• Write elegant, reusable, and efficient code in any situation
• Avoid common pitfalls like duplication, complicated design, and over-

engineering
• Understand when to use the functional or object-oriented approach to

programming
• Build a simple API with FastAPI and program GUI applications with Tkinter
• Get an initial overview of more complex topics such as data persistence and

cryptography
• Fetch, clean, and manipulate data, making efficient use of Python's built-in

data structures

https://www.packtpub.com/product/learn-python-programming-third-edition/9781801815093

[510]

Other Books You May Enjoy

Dancing with Python

Robert S. Sutor

ISBN: 9781801077859

• Explore different quantum gates and build quantum circuits with Qiskit and
Python

• Write succinct code the Pythonic way using magic methods, iterators, and
generators

• Analyze data, build basic machine learning models, and plot the results
• Search for information using the quantum Grover Search Algorithm
• Optimize and test your code to run efficiently

https://www.packtpub.com/product/dancing-with-python/9781801077859

[511]

Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.
com and apply today. We have worked with thousands of developers and tech
professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that
we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished JavaScript from Beginner to Professional, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go
straight to the Amazon review page for this book and share your feedback or leave
a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1800562527
https://packt.link/r/1800562527

[513]

Index
A
accordion component

building 256, 257
action

performing, for every item 176, 177
addition operator 32
analytics

building 294, 295
and operator 42
Angular 414

reference link 415
anonymous functions 142, 143
API (Application Programming Interface) 416
argument 120, 121
arguments object 314
arithmetic operators 32

addition 32
division 34
exponentiation 34
modulus 35, 36
multiplication 33
subtraction 33

array methods 176
arrays 48, 89, 98-100

built-in length property 51, 52
creating 48, 49
converting, to string 182, 183
elements, accessing 50
elements, adding 53-55
elements, deleting 55, 56
elements, finding 56, 57
elements, overwriting 50, 51
elements, replacing 53-55
filtering 177, 178
in objects 65

manipulating 68
methods 53
occurrence, finding in 179, 180
part, replacing with another

part of array 178, 179
reversing 58
sorting 58
string, converting to 182
values, mapping 179
working with 64

arrow functions 124, 125
returning with 129

assignment operators 38, 39
Asynchronous JavaScript and XML (AJAX) 417

reference link 418
async keyword 353, 354
attributes

exercise 249, 250
manipulating 247, 248

await keyword 353, 354

B
backend

learning 415
BigInt 24
Boolean 25
box clicker

speed test game 297, 298
break keyword 107-109

in labeled blocks 113
using, in nested loops 112, 113

breakpoints 318-320
example 320-324

Browser Object Model (BOM) 205, 211-213
window history object 214

[514]

window location object 216, 217
window navigator object 215

built-in JavaScript methods 168

C
callback queue 355-359
callbacks 346-348
call stack 355-359
canvas

drawing, with mouse 386-389
cases

combining 81, 82
classes 149-152

constructors 152, 153
methods 154
properties 156, 157

code comments 13
code completion 3
command prompt 14
company product catalog 68
comparison operators 40

equal 40
greater than 41
not equal 41
smaller than 41

compiling 4
concat() method 55
concurrency 346
condition

checking, for elements 178
conditional ternary operators 76
const keyword 19
constructors 152, 153
const scope 133, 134
continue keyword 107-110

in labeled blocks 113
using, in nested loops 112, 113

cookies
using 327-329

copyWithin() method 178
countdown clock 397, 398
countdown timer 202, 203
CSS selector

querySelectorAll(), using 236
querySelector(), using 235
used, for accessing DOM elements 234, 235

D
data-driven documents (D3) 408, 409
data position

obtaining, with GeoLocation 369, 370
data types

analyzing 27
converting 29-31
modifying 27

date methods 196
dates

converting, to string 200
creating 197, 198

debugging 317
decimals

turning, into integers 194, 195
decodeUri() 170
decodeUriComponent() 171, 172
decrement operator 36
default case 79, 80
default parameters 122, 123
digital accessibility

in HTML 394, 395
division operator 34
Document Object Model (DOM) 5, 205, 217,

218
additional properties 219
exercise 228, 229
overview 226-228
page elements, selecting 220, 221

DOM elements
accessing 230, 231
accessing, by class name 234
accessing, by ID 231, 232
accessing, by tag name 232, 233
accessing, with CSS selector 234, 235
innerHTML, modifying 230
innerText, modifying 230
selecting, as objects 229

DOM Event Flow 275-278
do while loop 91, 92
dynamic canvas 373

animations, adding to 383-385
circles, adding to 374-376
images, adding to 380-383
images, uploading to 380-383
lines, adding to 374-376

[515]

stick man, drawing 376, 377
text, adding to 377-379

dynamic images
saving 390-392

E
ECMAScript 6 (ES6) 5
element click handler 237, 238
elements

animating 292, 293
class, adding to 243, 244
class, modifying 243
class, removing 244, 245
class, toggling 246
creating 253, 254
dragging 285-287
dropping 285-287
exercise 255
mouse position, tracking 296

element style
manipulating 240-243

else-if statements 74, 75
email extractor 338
employee tracking app 163
encapsulation 158
encodeUri() 170
encodeUriComponent() 171, 172
equal operator 40
error handling 325, 326
escape()

encoding with 172
escape characters 22
eval()

used, for executing JavaScript 175, 176
event bubbling 278
event capturing 278
event delegation 278
event listeners

exercise 253
on element 251, 252

event loop 355
events

specifying 266
specifying, with event listeners 267, 268
specifying, with HTML 266
specifying, with JavaScript 267

event target property 272-274
exponent 196
exponentiation operator 34
Express module

reference link 420
Express Node.js framework

using 419

F
Fetch API 417
Fibonacci sequence 90
floats

making, with parseFloat() 174, 175
foreach 87
for in loop 103

used, for looping over object 103
for loops 92-94
formatting code 11

indentations and whitespace 11, 12
semicolon 12

form submission 289-291
form validator 339, 340
for of loop 101, 102
frameworks 404, 412

Angular 414
Vue.js 412, 413

friend checker game 83
function callbacks 143, 144
functions 314

basic functions 118
invoking 118
local variables 130, 131
naming 119
return value 128
writing 118, 119

function values
returning 127

G
GeoLocation

used, for obtaining data position 369, 370
get keyword 158
getters 157-159
global JavaScript methods 169
global variables 134-136
greater than operator 41

[516]

H
Hangman game 259-261
highest number

finding 193
HTML5

with JavaScript 364
HTML5 canvas 370-372

exercise 373
HTML crash course 206
Hyper-Text Markup Language (HTML) 206

attributes 210
elements 206-210
elements, manipulating with JavaScript 222
used, for specifying events 266

Hypertext Transfer Protocol (HTTP) 416

I
if-else statements 72, 73
if statements 72, 73
immediately invoked function expression

(IIFE) 136, 137
includes() method 359
increment operator 36
index

working with 183, 184
inheritance 159-161
integers

decimals, turning into 194, 195
making, with parseInt() 172, 173

Integrated Development Environment (IDE) 3
interactive content 266
interactive voting system 258, 259
interpreter 4

J
JavaScript

adding, to web page 8
executing, with eval() 175, 176
external file, linking to web page 9-11
HTML elements, manipulating with 222
in HTML 8, 9
learning, need for 2, 3
used, for specifying events 267
using, in HTML5 364

JavaScript code
code comments 13
command prompt 14
formatting code 11
random number 14
writing 11

JavaScript coding environment
Integrated Development Environment (IDE) 3
online editors 4
setting up 3
tools 4
web browser 4

JavaScript hoisting 315, 316
JavaScript Object Notation (JSON) 333, 334

parsing 336
jQuery 405-407

URL 408
JSON

working with 421

K
key event handler 282-284

L
let keyword 19

block scope 19
let variables

versus var variables 132, 133
libraries 404, 405

data-driven documents (D3) 408, 409
jQuery 405-407
React 410, 411
Underscore library 409, 410

list
creating, to save local storage 421, 422

local file reader 365
files, displaying 368, 369
files, reading 367
files, uploading 365-369

local storage 330-332
local variables

in functions 130, 131
logarithm 196
logical operators 42

and 42

[517]

not 43
or 43

loops 87
arrays 98-100
do while loop 91, 92
for a loop 101, 102
for in loop 103
for loop 92-94
for of loop 103
nested loop 95, 96
used, for creating math

multiplication table 114
while loop 88-90

lowest number
finding 193

M
Math methods 192
math multiplication table

creating, with loops 114
math quiz

creating 341, 342
Matrix effect

creating 395-397
media

adding, on page 392, 393
menu items price calculator 163
methods 154, 155
modulus operator 35, 36
mouse event handlers 270-272
multidimensional arrays 59, 60
multiplication operator 33

N
nested functions 140, 141
nested loops 95, 96

using, in break keyword 111-113
using, in continue keyword 111-113

Node.js 418, 419
reference link 418

Node Package Manager (NPM) 411
not equal operator 40
not operator 43
null 26
number 23

number game
evaluating 82

number methods 190
isFinite() 190
isInteger() 191
isNaN 190

number of decimals
specifying 192

O
object-oriented programming (OOP) 150, 409
objects 150

in arrays 66
in objects 64
looping over, by converting to array 104-106
looping over, with for in loop 103
updating 62, 63
working with 64

objects in arrays
in objects 66, 67

objects, JavaScript 61, 62
occurrence

finding, in array 179, 180
onblur 280, 281
onchange 280, 281
online editor

for JavaScript coding environment 4
online paint app 399-401
onload event handler 268, 269
operand 36
operators 32

arithmetic operators 32
assignment operators 38, 39
combining 38
comparison operators 40
logical operators 42

or operator 43
OWASP (Open Web Application Security

Project) 176

P
page elements

selecting 220, 221
parameter 121
parseFloat()

used, for making floats 174, 175

[518]

parseInt()
used, for making integers 172, 173

parsing dates 200
parsing numbers 172
password checker 359
positions

working with 183, 184
postfix unary operator 36, 37
precision

specifying 192
prefix unary operator 36, 37
primitive data types 20

BigInt 24
Boolean 25
null 26
number 23
strings 21
symbol 25
undefined 26

printStuff() 177
Promises 349-352
properties 156

getters 157-159
setters 157-159

prototype 161, 162

R
random number

generating, in JavaScript 14, 15
React 410, 411
React documentation

reference link 411
recursive functions 138, 139

creating 145
regex 184, 302
regular expressions 302, 303

character options 304-307
email validation 312
groups 307-309
multiple options, specifying

for words 303, 304
rest parameter 127
rock paper scissors game 83

S
set keyword 158
setters 157-159
setTimeout 145
single-page applications (SPAs) 412
smaller than operator 41
splice() method 54
spread operator 125, 126
star rating system

creating 295, 296
strict mode

using 316, 317
string methods 181
string parts

replacing 185, 186
strings 21

array, converting to 182, 183
combining 181
converting, to array 182
date, converting to 200
end of 187, 188
lowercase 186, 187
replacing 310
searching 310
start of 187, 188
uppercase 186, 187

substrings
creating 185

subtraction operator 33
switch statement 77, 78

default case 79, 80
symbol 25

T
this keyword 15, 238, 239

exercise 239
type of 28

U
unary operators

decrement 36
increment 36

[519]

undefined data type 26
Underscore.js

reference link 410
Underscore library 409, 410
unescape()

encoding with 172
uniform resource identifier (URI)s

decoding 169, 170
encoding 169, 170

uniform resource locator (URL) 169
unsuitable parameters 122, 123

V
values

mapping, of array 179
variables 18

declaring 18
naming 20

var keyword 19
global scope 19

var variables
versus let variables 132, 133

Vue.js 412, 413
reference link 414

W
web browser

for JavaScript coding environment 4
recognizing, JavaScript 4, 5

web browser console
using 5-7
working with 7

web page
JavaScript, adding to 8

while loop 88-90
window browser object 211
window history object 214
window location object 216, 217
window navigator object 215
word scrambler 201, 202

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with JavaScript
	Why should you learn JavaScript?
	Setting up your environment
	Integrated Development Environment
	Web browser
	Extra tools
	Online editor

	How does the browser understand JavaScript?
	Using the browser console
	Practice exercise 1.1

	Adding JavaScript to a web page
	Directly in HTML
	Practice exercise 1.2

	Linking an external file to our web page
	Practice exercise 1.3

	Writing JavaScript code
	Formatting code
	Indentations and whitespace
	Semicolons

	Code comments
	Practice exercise 1.4

	Prompt
	Random numbers

	Chapter project
	Creating an HTML file and a linked JavaScript file

	Self-check quiz
	Summary

	Chapter 2: JavaScript Essentials
	Variables
	Declaring variables
	let, var, and const
	Naming variables

	Primitive data types
	String
	Escape characters

	Number
	BigInt
	Boolean
	Symbol
	Undefined
	null

	Analyzing and modifying data types
	Working out the type of a variable
	Converting data types
	Practice exercise 2.1

	Operators
	Arithmetic operators
	Addition
	Subtraction
	Multiplication
	Division
	Exponentiation
	Modulus
	Unary operators: increment and decrement
	Combining the operators
	Practice exercise 2.3

	Assignment operators
	Practice exercise 2.4

	Comparison operators
	Equal
	Not equal
	Greater than and smaller than

	Logical operators
	And
	Or
	Not

	Chapter project
	Miles-to-kilometers converter
	BMI calculator

	Self-check quiz
	Summary

	Chapter 3: JavaScript Multiple Values
	Arrays and their properties
	Creating arrays
	Accessing elements
	Overwriting elements
	Built-in length property
	Practice exercise 3.1

	Array methods
	Adding and replacing elements
	Deleting elements
	Finding elements
	Sorting
	Reversing
	Practice exercise 3.2

	Multidimensional arrays
	Practice exercise 3.3

	Objects in JavaScript
	Updating objects
	Practice exercise 3.4

	Working with objects and arrays
	Objects in objects
	Arrays in objects
	Objects in arrays
	Objects in arrays in objects
	Practice exercise 3.5

	Chapter projects
	Manipulating an array
	Company product catalog

	Self-check quiz
	Summary

	Chapter 4: Logic Statements
	if and if else statements
	Practice exercise 4.1

	else if statements
	Practice exercise 4.2

	Conditional ternary operators
	Practice exercise 4.3

	switch statements
	The default case
	Practice exercise 4.4

	Combining cases
	Practice exercise 4.5

	Chapter projects
	Evaluating a number game
	Friend checker game
	Rock Paper Scissors game

	Self-check quiz
	Summary

	Chapter 5: Loops
	while loops
	Practice exercise 5.1

	do while loops
	Practice exercise 5.2

	for loops
	Practice exercise 5.3

	Nested loops
	Practice exercise 5.4

	Loops and arrays
	Practice exercise 5.5
	for of loop
	Practice exercise 5.6

	Loops and objects
	for in loop
	Practice exercise 5.7

	Looping over objects by converting to an array

	break and continue
	break
	continue
	Practice exercise 5.8
	break, continue, and nested loops
	break and continue and labeled blocks

	Chapter project
	Math multiplication table

	Self-check quiz
	Summary

	Chapter 6: Functions
	Basic functions
	Invoking functions
	Writing functions
	Naming functions
	Practice exercise 6.1
	Practice exercise 6.2

	Parameters and arguments
	Practice exercise 6.3
	Default or unsuitable parameters

	Special functions and operators
	Arrow functions
	Spread operator
	Rest parameter

	Returning function values
	Practice exercise 6.4
	Returning with arrow functions

	Variable scope in functions
	Local variables in functions
	let versus var variables
	const scope

	Global variables
	Immediately invoked function expression
	Practice exercise 6.5

	Recursive functions
	Practice exercise 6.6

	Nested functions
	Practice exercise 6.7

	Anonymous functions
	Practice exercise 6.8
	Function callbacks

	Chapter projects
	Create a recursive function
	Set timeout order

	Self-check quiz
	Summary

	Chapter 7: Classes
	Object-oriented programming
	Classes and objects
	Classes
	Constructors
	Practice exercise 7.1

	Methods
	Practice exercise 7.2

	Properties
	Getters and setters

	Inheritance
	Prototypes
	Practice exercise 7.3

	Chapter projects
	Employee tracking app
	Menu items price calculator

	Self-check quiz
	Summary

	Chapter 8: Built-In JavaScript Methods
	Introduction to built-in JavaScript methods
	Global methods
	Decoding and encoding URIs
	decodeUri() and encodeUri()
	decodeUriComponent() and encodeUriComponent()
	Encoding with escape() and unescape()
	Practice exercise 8.1

	Parsing numbers
	Making integers with parseInt()
	Making floats with parseFloat()

	Executing JavaScript with eval()

	Array methods
	Performing a certain action for every item
	Filtering an array
	Checking a condition for all elements
	Replacing part of an array with another part of the array
	Mapping the values of an array
	Finding the last occurrence in an array
	Practice exercise 8.2
	Practice exercise 8.3

	String methods
	Combining strings
	Converting a string to an array
	Converting an array to a string
	Working with index and positions
	Creating substrings
	Replacing parts of the string
	Uppercase and lowercase
	The start and end of a string
	Practice exercise 8.4
	Practice exercise 8.5

	Number methods
	Checking if something is (not) a number
	Checking if something is finite
	Checking if something is an integer
	Specifying a number of decimals
	Specifying precision

	Math methods
	Finding the highest and lowest number
	Square root and raising to the power of
	Turning decimals into integers
	Exponent and logarithm
	Practice exercise 8.6

	Date methods
	Creating dates
	Methods to get and set the elements of a date
	Parsing dates
	Converting a date to a string
	Practice exercise 8.7

	Chapter projects
	Word scrambler
	Countdown timer

	Self-check quiz
	Summary

	Chapter 9: The Document Object Model
	HTML crash course
	HTML elements
	HTML attributes

	The BOM
	Practice exercise 9.1
	Window history object
	Window navigator object
	Window location object
	Practice exercise 9.2

	The DOM
	Additional DOM properties
	Selecting page elements
	Practice exercise 9.3

	Chapter project
	Manipulating HTML elements with JavaScript

	Self-check quiz
	Summary

	Chapter 10: Dynamic Element Manipulation Using the DOM
	Basic DOM traversing
	Practice exercise 10.1
	Selecting elements as objects
	Changing innerText
	Changing innerHTML

	Accessing elements in the DOM
	Accessing elements by ID
	Practice exercise 10.2

	Accessing elements by tag name
	Practice exercise 10.3

	Accessing elements by class name
	Practice exercise 10.4

	Accessing elements with a CSS selector
	Using querySelector()
	Using querySelectorAll()

	Element click handler
	This and the DOM
	Practice exercise 10.7

	Manipulating element style
	Changing the classes of an element
	Adding classes to elements
	Removing classes from elements
	Toggling classes

	Manipulating attributes
	Practice exercise 10.8

	Event listeners on elements
	Practice exercise 10.9

	Creating new elements
	Practice exercise 10.10

	Chapter projects
	Collapsible accordion component
	Interactive voting system
	Hangman game

	Self-check quiz
	Summary

	Chapter 11: Interactive Content and Event Listeners
	Introducing interactive content
	Specifying events
	Specifying events with HTML
	Specifying events with JavaScript
	Practice exercise 11.1

	Specifying events with event listeners
	Practice exercise 11.2

	The onload event handler
	Practice exercise 11.3

	Mouse event handlers
	Practice exercise 11.4

	The event target property
	Practice exercise 11.5

	DOM event flow
	Practice exercise 11.6

	onchange and onblur
	Practice exercise 11.7

	Key event handler
	Practice exercise 11.8

	Drag and drop elements
	Practice exercise 11.9

	Form submission
	Practice exercise 11.10

	Animating elements
	Practice exercise 11.11

	Chapter projects
	Build your own analytics
	Star rating system
	Mouse position tracker
	Box clicker speed test game

	Self-check quiz
	Summary

	Chapter 12: Intermediate JavaScript
	Regular expressions
	Specifying multiple options for words
	Character options
	Groups
	Practical regex
	Searching and replacing strings
	Email validation

	Functions and the arguments object
	Practice exercise 12.3

	JavaScript hoisting
	Using strict mode
	Debugging
	Breakpoints
	Practice exercise 12.4

	Error handling
	Practice exercise 12.5

	Using cookies
	Practice exercise 12.6

	Local storage
	Practice exercise 12.7

	JSON
	Practice exercise 12.8
	Parsing JSON
	Practice exercise 12.9
	Practice exercise 12.9 answers

	Chapter projects
	Email extractor
	Form validator
	Simple math quiz

	Self-check quiz
	Summary

	Chapter 13: Concurrency
	Introducing concurrency
	Callbacks
	Practice exercise 13.1

	Promises
	Practice exercise 13.2

	async and await
	Practice exercise 13.3

	Event loop
	Call stack and callback queue

	Chapter project
	Password checker

	Self-check quiz
	Summary

	Chapter 14: HTML5, Canvas, and JavaScript
	Introducing HTML5 with JavaScript
	Local file reader
	Uploading files
	Reading files
	Practice exercise 14.1

	Getting position data with GeoLocation
	HTML5 canvas
	Practice exercise 14.2

	Dynamic canvas
	Adding lines and circles to the canvas
	Practice exercise 14.3

	Adding text to the canvas
	Practice exercise 14.4

	Adding and uploading images to the canvas
	Practice exercise 14.5

	Adding animations to the canvas
	Practice exercise 14.6

	Drawing on canvas with a mouse
	Practice exercise 14.7

	Saving dynamic images
	Media on the page
	Digital accessibility in HTML
	Chapter projects
	Create a Matrix effect
	Countdown clock
	Online paint app

	Self-check quiz
	Summary

	Chapter 15: Next Steps
	Libraries and frameworks
	Libraries
	jQuery
	D3
	Underscore
	React

	Frameworks
	Vue.js
	Angular

	Learning the backend
	APIs
	AJAX
	Practice exercise 15.1

	Node.js
	Using the Express Node.js framework

	Next steps
	Chapter projects
	Working with JSON
	List-making project

	Self-check quiz
	Summary

	Appendix – Practice Exercise, Project, and Self-Check Quiz Answers
	Chapter 1, Getting Started with JavaScript
	Practice exercises
	Projects
	Creating an HTML file and a linked JavaScript file

	Self-check quiz

	Chapter 2, JavaScript Essentials
	Practice exercises
	Projects
	Miles-to-kilometers converter
	BMI calculator

	Self-check quiz

	Chapter 3, JavaScript Multiple Values
	Practice exercises
	Projects
	Manipulating an array
	Company product catalog

	Self-check quiz

	Chapter 4, Logic Statements
	Practice exercises
	Projects
	Evaluating a number game answers
	Friend checker game answers
	Rock paper scissors game answers

	Self-check quiz

	Chapter 5, Loops
	Practice exercises
	Project
	Math multiplication table

	Self-check quiz

	Chapter 6, Functions
	Practice exercises
	Projects
	Create a recursive function
	Set timeout order

	Self-check quiz

	Chapter 7, Classes
	Practice exercises
	Projects
	Employee tracking app
	Menu items price calculator

	Self-check quiz

	Chapter 8, Built-In JavaScript Methods
	Practice exercises
	Projects
	Word scrambler
	Countdown timer

	Self-check quiz

	Chapter 9, The Document Object Model
	Practice exercises
	Projects
	Manipulating HTML elements with JavaScript

	Self-check quiz

	Chapter 10, Dynamic Element Manipulation Using the DOM
	Practice exercises
	Projects
	Collapsible accordion component
	Interactive voting system
	Hangman game

	Self-check quiz

	Chapter 11, Interactive Content and Event Listeners
	Practice exercises
	Projects
	Build your own analytics
	Star rater system
	Mouse position tracker
	Box clicker speed test game

	Self-check quiz

	Chapter 12, Intermediate JavaScript
	Practice exercises
	Projects
	Email extractor
	Form validator
	Simple math quiz

	Self-check quiz

	Chapter 13, Concurrency
	Practice exercises
	Projects
	Password checker

	Self-check quiz

	Chapter 14, HTML5, Canvas, and JavaScript
	Practice exercises
	Projects
	Create a Matrix effect
	Countdown clock
	Online paint app

	Self-check quiz

	Chapter 15, Next Steps
	Practice exercises
	Projects
	Working with JSON
	List-making project

	Self-check quiz

	Packt Page
	Other Books You May Enjoy
	Index

